
Theory of Computation 
Lesson 1

Deterministic Finite State Automata





Each coin will now represent the letters that 

make up a word for us.

 5 + 5 + 5 + 5 + 5 ----> AAAAA

 5 + 10 + 10 ----> ABB

 5 + 5 + 5 + 10 ----> AAAB

… 

 10 + 10 + 5 ----> BBA

 25 ----> C

Now we must figure out which words should be 
accepted.

Imagine opening the gate with 25 cents.



 Automaton systems have no memory!

When the user puts to machine a new 
coin, the system cannot remember 

how much coin has been thrown in 
total until that moment. 

 Therefore, the system cannot calculate 
how much more coins needs to be 

thrown to open the gate.

But we have a problem



Finite State Automata use states to remember situations.

Instead of Variables



If we want to solve the toll-

gate problem with finite state 

automata, we should see the 

coins thrown to open the 

gate as letters on the 

keyboard.

To save the world

We need Transformers



We need a Transformation



q0 : there is no money at the automaton yet

q1 : we have 5 cents only 

q2 : 10 cents 

q3 : 15 cents

q4 : 20 cents

q5 : 25 cents

States



Since each coin the user 

throws will correspond to a 
letter, we must first define 

an alphabet and map 
which symbol each coin 
corresponds to.

Alphabet



We have to represent each symbol in our alphabet as an arrow going 

out of each state. Like the others, there should be three edges that 

come out of q0: 5, 10, and 25 cents (because of our alphabet)

Transitions



 One of the states defined to solve the problem must be identified 

as Start (or initial) state.

Start State



 The states which should open the gate must be described as 

Accept (or final) states.

Accept State



We now come to the formal definition of a finite automaton.

Definition: A finite automaton is a 5-tuple M = (Q, Σ, δ, q, F) where 

1. Q is a finite set, whose elements are called states,

2. Σ is a finite set, called the alphabet; the elements of Σ are called symbols, 

3. δ : Q x Σ → Q, called the transition function, 

4. q is an element of Q; it is called the start state,

5. F is a subset of Q; the elements of F are called accept states.

Formal Definition



Let there be a system that works with 1€ 
and 2€ coins. Let's represent these two 

coins with a (1€) and b (2€). Draw the 
transition diagram of the finite state 
automaton that does not open the door 
without giving at least two €2.

It is your turn



A = {w : w is a binary string containing an odd number of 1s}.

     Σ = {0, 1} 

 0000 1 0000000 1 000000 1 0000000 1 000000 1 00000

       odd           even       odd           even       odd

A first example



 qe : even number of 1s

 qo : odd number of 1s

A first example



Table Method

A first example



A = {w : w is a binary string containing 101 as a substring}. 

Here, when we reach a “101” sequence, we accept it. This 
substring can be at beginning, end or middle of the string.

q : Start state, we have nothing

q1 : The first symbol (“1”) made an alarm

q10 : The second symbol (“0”) increase the alarm level

q101 : The third symbol (“1”) accepts the string

A second example



A second example



A = {w ∈ {0,1}∗ : w has a 1 in the third position from the LEFT}

 This problem is easier than the previous one. Because the 
first and the second letters are not important, we can 
think at first the third letter from the start. 

 {0,1}  {0,1}  1  {0,1}∗

 If the third one is 1, then go an accept stay and stay 
there, else, go a reject state and stay there.

A third example



Here, we should think the solution directly. Thus, we draw the 
first four states. Then we add a last state for rejecting. So, 
using five states is enough.

q1 q2 q3 q4

q5

0,1 0,1 1

0

0,1

0,1

A third example



A = {w ∈ {0,1}∗ : w contains an even number of 0s and 1s}

Here, we can assume that there are even numbers of 0s and 1s 
in the start state. Now we need four states as:

 qee: even number of 0s and even numbers of 1s

 qoe: odd number of 0s and even numbers of 1s

 qeo: even number of 0s and odd numbers of 1s

 qoo: odd number of 0s and odd numbers of 1s

It is your turn



A = {w ∈ {0,1}∗ : w has a 1 in the third position from the right}

Here, the last three letters are important, and we need 
remember them all. Therefore, we need 8 different states:

 Since each new symbol from the user is added to the right of 

the string, the state in the design may have to change

q000

q001

q010

q011

q100

q101

q110

q111

A fourth example



After 

determination of 
the states, 

designing the 
transitions will be 
easier.

           ☺

A fourth example



Draw the transition diagram of the finite 
state automaton of the regular language 

where both 0's and 1's are odd.

A={01, 10, 0001, 0111, 1110, 1000, 111000,…}

It is your turn



Solution



That’s all.

Thanks for listening.
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