
Theory of Computation
Lesson 1

Deterministic Finite State Automata

Each coin will now represent the letters that

make up a word for us.

 5 + 5 + 5 + 5 + 5 ----> AAAAA

 5 + 10 + 10 ----> ABB

 5 + 5 + 5 + 10 ----> AAAB

…

 10 + 10 + 5 ----> BBA

 25 ----> C

Now we must figure out which words should be
accepted.

Imagine opening the gate with 25 cents.

 Automaton systems have no memory!

When the user puts to machine a new
coin, the system cannot remember

how much coin has been thrown in
total until that moment.

 Therefore, the system cannot calculate
how much more coins needs to be

thrown to open the gate.

But we have a problem

Finite State Automata use states to remember situations.

Instead of Variables

If we want to solve the toll-

gate problem with finite state

automata, we should see the

coins thrown to open the

gate as letters on the

keyboard.

To save the world

We need Transformers

We need a Transformation

q0 : there is no money at the automaton yet

q1 : we have 5 cents only

q2 : 10 cents

q3 : 15 cents

q4 : 20 cents

q5 : 25 cents

States

Since each coin the user

throws will correspond to a
letter, we must first define

an alphabet and map
which symbol each coin
corresponds to.

Alphabet

We have to represent each symbol in our alphabet as an arrow going

out of each state. Like the others, there should be three edges that

come out of q0: 5, 10, and 25 cents (because of our alphabet)

Transitions

 One of the states defined to solve the problem must be identified

as Start (or initial) state.

Start State

 The states which should open the gate must be described as

Accept (or final) states.

Accept State

We now come to the formal definition of a finite automaton.

Definition: A finite automaton is a 5-tuple M = (Q, Σ, δ, q, F) where

1. Q is a finite set, whose elements are called states,

2. Σ is a finite set, called the alphabet; the elements of Σ are called symbols,

3. δ : Q x Σ → Q, called the transition function,

4. q is an element of Q; it is called the start state,

5. F is a subset of Q; the elements of F are called accept states.

Formal Definition

Let there be a system that works with 1€
and 2€ coins. Let's represent these two

coins with a (1€) and b (2€). Draw the
transition diagram of the finite state
automaton that does not open the door
without giving at least two €2.

It is your turn

A = {w : w is a binary string containing an odd number of 1s}.

 Σ = {0, 1}

 0000 1 0000000 1 000000 1 0000000 1 000000 1 00000

 odd even odd even odd

A first example

 qe : even number of 1s

 qo : odd number of 1s

A first example

Table Method

A first example

A = {w : w is a binary string containing 101 as a substring}.

Here, when we reach a “101” sequence, we accept it. This
substring can be at beginning, end or middle of the string.

q : Start state, we have nothing

q1 : The first symbol (“1”) made an alarm

q10 : The second symbol (“0”) increase the alarm level

q101 : The third symbol (“1”) accepts the string

A second example

A second example

A = {w ∈ {0,1}∗ : w has a 1 in the third position from the LEFT}

 This problem is easier than the previous one. Because the
first and the second letters are not important, we can
think at first the third letter from the start.

 {0,1} {0,1} 1 {0,1}∗

 If the third one is 1, then go an accept stay and stay
there, else, go a reject state and stay there.

A third example

Here, we should think the solution directly. Thus, we draw the
first four states. Then we add a last state for rejecting. So,
using five states is enough.

q1 q2 q3 q4

q5

0,1 0,1 1

0

0,1

0,1

A third example

A = {w ∈ {0,1}∗ : w contains an even number of 0s and 1s}

Here, we can assume that there are even numbers of 0s and 1s
in the start state. Now we need four states as:

 qee: even number of 0s and even numbers of 1s

 qoe: odd number of 0s and even numbers of 1s

 qeo: even number of 0s and odd numbers of 1s

 qoo: odd number of 0s and odd numbers of 1s

It is your turn

A = {w ∈ {0,1}∗ : w has a 1 in the third position from the right}

Here, the last three letters are important, and we need
remember them all. Therefore, we need 8 different states:

 Since each new symbol from the user is added to the right of

the string, the state in the design may have to change

q000

q001

q010

q011

q100

q101

q110

q111

A fourth example

After

determination of
the states,

designing the
transitions will be
easier.

 ☺

A fourth example

Draw the transition diagram of the finite
state automaton of the regular language

where both 0's and 1's are odd.

A={01, 10, 0001, 0111, 1110, 1000, 111000,…}

It is your turn

Solution

That’s all.

Thanks for listening.

	Slide 1: Theory of Computation Lesson 1
	Slide 2
	Slide 3: Imagine opening the gate with 25 cents.
	Slide 4: But we have a problem
	Slide 5: Instead of Variables
	Slide 6: To save the world We need Transformers
	Slide 7: We need a Transformation
	Slide 8: States
	Slide 9: Alphabet
	Slide 10: Transitions
	Slide 11: Start State
	Slide 12: Accept State
	Slide 13: Formal Definition
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26: Solution
	Slide 27

