Theory of Computation

Lesson |1

Decidable & Undecidable Languages

\

Decidability

The main titles you will hear within the scope of this
chapter are as follows:

» Decidable Languages
Enumerable Languages

» Undecidable Languages

In some sources, the terms Recursively Enumerable or
Turing Recognizable is used instead of Enumerable.
\ Don't be confused, they all represent the same thing.

Decidability

Undecidable Languages

all languages
enumerable DeCidO ble LOngUOg eS

Decidable Languages

On a word entered for testing L-language, a Turing
Machine (TM) can do one of following:

® StOps and accepts,
stops and rejects,

= Or cannoft stop.

It a TM prepared for an L-language guarantees to stop
by making a decision of accept or reject on every word
entered by a user, then the L-language is called

\ Decidable Language.

Enumerable (Recognizable) Languages

L-language is called recursively enumerable or Turing
recognizable, if a Turing Machine prepared for L

stops by accepting words that are elements of L-
language,

= but cannot guarantee stopping on words that are nof
elements (sometimes rejecting but sometimes nof
terminating)

Undecidable Languages

It a Turing Machine cannot terminate on L-language,
IN other words neither

It any TM cannot guarantee terminate in words that
are elements of the language,

»|f any TM cannot guarantee stopping on words that
are not elements of the language,

\ That L-language is called as Undecidable.

A rp Language with TM

We can implement any DFA language on JFLAP, and
the code can decide a word is element of that
language or not. We can be sure that our code will
terminate absolutely. Because we know that, there is no
loop-forever in DFA. It has states and each state means
accept or reject.

DFA language is decidable.

A\ra Language with TM

We learned that DFA and NFA are equivalent 1o each
other. With this information alone, you can interpret
that, it DFA is decidable, then NFA must be decidable
t0o. Because every NFA can be transformed into a DFA,
we can prove this theoretically.

NFA language is decidable.

Ac;c Language with TM

In order to find out if It iIs decidable, we can consider
Chomsky normal form. If we transform a CFG into
Chomsky normal form, for a word with n length, it is

aranteed that it terminates in 2n-1 steps. Thus, we
have proved the following result:

CFG language is decidable.

A;u Language with TM

We can start by considering the JFLAP implementation
again. When a code written with a TM is loaded info
JFLAP,

®» Can JFLAP detect that the code has an infinite-loop¢
= Can JFLAP guarantee terminating on every TM code?

A;u Language with TM

We assume that A is decidable. Then there exists a
Turing machine H that has the following property. For
every Input string <M, w> for H:

It <M, w> € A, (Il.e., M accepts w), then H terminates
IN Ifs accept state.

®|f <M, w>¢& Ay (l.e., M rejects w or M does not

terminate on input w), then H terminates in its reject
state. 4)

o | -
N J

A;u Language with TM

We create a new Turing machine D to run on <M>. You
can think of D as a compiler and M is just another TM
code torun on D. The D compiler is executed as follows:

Run the Turing machine H on the input <M, <M>>,

®|f H tferminates in its accept state, then D ferminates in
Its reject state.

® |f H ferminates in its reject state, then D terminates in
Ifs accept state.

A;u Language with TM

Assume that we load D itself as code info the D
compiler again. The D compiler was already testing the
loaded code by sending its own codes as strings via H.
there is a contradiction here.

»|f D accepts <D>, then H ferminates in its accept
state, thus D rejects <D>.

®»|f D rejects <D> or does not terminate, then H
terminates in ifs reject state, thus D accepfts <D>.

\

A;u Language with TM
2 A\

<D>

GEEEER
1O
—

H .
g J
\ _/

If D accepts <D>, then H terminates in its accept state, thus D rejects <D>.
If D rejects <D> or does not terminate, then H terminates in its reject state, thus D accepts <D>.

AN
U
\Y

Halting Problem

Based on the Church-Turing thesis, we can say that the
same problem can occur in a Java program. We define

the following language:

= Halt = {<P, w>: P is a Java program that terminates on
the input string w}.

Halting Problem

Let the H and Q programs below be prepared with the
same logic as in the previous example.

/lgﬂrithm Q((P)) H(P,w) { true if P(w) terminates,

false if P(w) does not terminate.

while H (P, (P)) = true
do have a beer
endwhile

A:u and Halting are Enumerable

ATM
all languages H d | 'l'i N g
enumerable
X
decidable X

Decidability vs. Enumerability

It you are in doubt about a problem, you can comment
using the rules below.

1. Pis Decidable, it and only it ~P is Decidable.

(P eD)« (~P€D)

2. P is Decidable, if and only if P and ~P are Enumerable.
»PeD)« (~PeE)and (P € E)

3. If Pis Decidable, then P is Enumerable.

»PeD)— (PekE)

» That's all.

» Thanks for listening.

	Slide 1: Theory of Computation Lesson 11
	Slide 2
	Slide 3
	Slide 4: Decidable Languages
	Slide 5: Enumerable (Recognizable) Languages
	Slide 6: Undecidable Languages
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

