
Theory of Computation
Lesson 11

Decidable & Undecidable Languages

The main titles you will hear within the scope of this
chapter are as follows:

Decidable Languages

Enumerable Languages

Undecidable Languages

In some sources, the terms Recursively Enumerable or

Turing Recognizable is used instead of Enumerable.

Don't be confused, they all represent the same thing.

Decidability

Decidability

Undecidable Languages

Decidable Languages

Decidable Languages

On a word entered for testing L-language, a Turing
Machine (TM) can do one of following:

stops and accepts,

stops and rejects,

or cannot stop.

If a TM prepared for an L-language guarantees to stop

by making a decision of accept or reject on every word
entered by a user, then the L-language is called

Decidable Language.

Enumerable (Recognizable) Languages

L-language is called recursively enumerable or Turing
recognizable, if a Turing Machine prepared for L

stops by accepting words that are elements of L-
language,

but cannot guarantee stopping on words that are not
elements (sometimes rejecting but sometimes not

terminating)

Undecidable Languages

If a Turing Machine cannot terminate on L-language,
in other words neither

 If any TM cannot guarantee terminate in words that
are elements of the language,

 If any TM cannot guarantee stopping on words that
are not elements of the language,

That L-language is called as Undecidable.

We can implement any DFA language on JFLAP, and
the code can decide a word is element of that

language or not. We can be sure that our code will

terminate absolutely. Because we know that, there is no

loop-forever in DFA. It has states and each state means

accept or reject.

DFA language is decidable.

ADFA Language with TM

We learned that DFA and NFA are equivalent to each
other. With this information alone, you can interpret

that, if DFA is decidable, then NFA must be decidable

too. Because every NFA can be transformed into a DFA,

we can prove this theoretically.

NFA language is decidable.

ANFA Language with TM

In order to find out if it is decidable, we can consider
Chomsky normal form. If we transform a CFG into

Chomsky normal form, for a word with n length, it is

guaranteed that it terminates in 2n-1 steps. Thus, we

have proved the following result:

CFG language is decidable.

ACFG Language with TM

We can start by considering the JFLAP implementation
again. When a code written with a TM is loaded into

JFLAP,

Can JFLAP detect that the code has an infinite-loop?

Can JFLAP guarantee terminating on every TM code?

ATM Language with TM

H .

We assume that ATM is decidable. Then there exists a
Turing machine H that has the following property. For

every input string <M, w> for H:

 If <M, w> ∈ ATM (i.e., M accepts w), then H terminates

in its accept state.

 If <M, w> ∉ ATM (i.e., M rejects w or M does not

terminate on input w), then H terminates in its reject

state.

ATM Language with TM

We create a new Turing machine D to run on <M>. You
can think of D as a compiler and M is just another TM

code to run on D. The D compiler is executed as follows:

Run the Turing machine H on the input <M,<M>>.

 If H terminates in its accept state, then D terminates in

its reject state.

 If H terminates in its reject state, then D terminates in

its accept state.

ATM Language with TM

Assume that we load D itself as code into the D
compiler again. The D compiler was already testing the

loaded code by sending its own codes as strings via H.

So there is a contradiction here.

 If D accepts <D>, then H terminates in its accept

state, thus D rejects <D>.

 If D rejects <D> or does not terminate, then H

terminates in its reject state, thus D accepts <D>.

ATM Language with TM

ATM Language with TM

D .

H .

D
.

<D>

If D accepts <D>, then H terminates in its accept state, thus D rejects <D>.

If D rejects <D> or does not terminate, then H terminates in its reject state, thus D accepts <D>.

<D>

Based on the Church-Turing thesis, we can say that the
same problem can occur in a Java program. We define

the following language:

Halt = {<P, w>: P is a Java program that terminates on

the input string w}.

Halting Problem

Let the H and Q programs below be prepared with the
same logic as in the previous example.

Halting Problem

ATM and Halting are Enumerable

ATM

 Halting

x

x

If you are in doubt about a problem, you can comment
using the rules below.

1. P is Decidable, if and only if ~P is Decidable.

(P ∈ D) (~P ∈ D)

2. P is Decidable, if and only if P and ~P are Enumerable.

(P ∈ D) (~P ∈ E) and (P ∈ E)

3. If P is Decidable, then P is Enumerable.

(P ∈ D) → (P ∈ E)

Decidability vs. Enumerability

That’s all.

Thanks for listening.

	Slide 1: Theory of Computation Lesson 11
	Slide 2
	Slide 3
	Slide 4: Decidable Languages
	Slide 5: Enumerable (Recognizable) Languages
	Slide 6: Undecidable Languages
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19

