

Theory of Computation

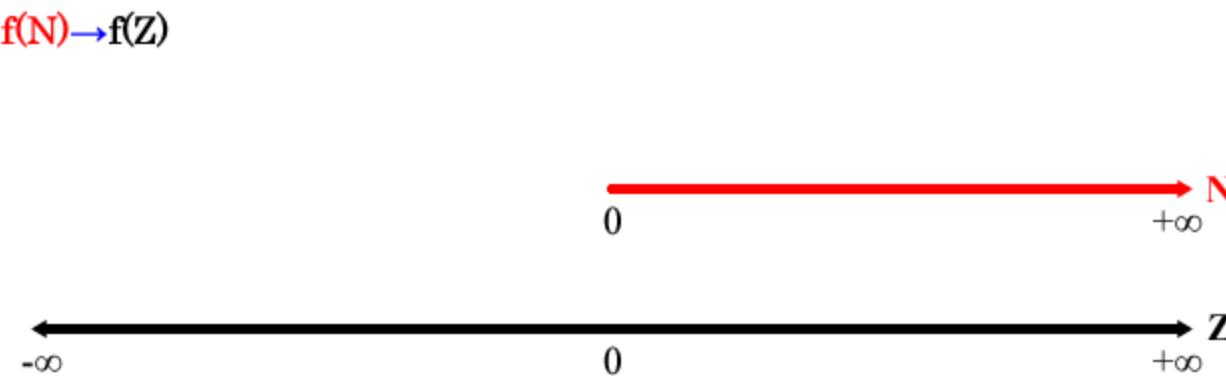
Countable & Uncountable Languages

Cardinality

Cardinality is simply a measure of the number of elements of a set. For example, the set $A=\{a, b, ab, ba\}$ contains 4 elements, and therefore A has a cardinality of 4.

- *The size or Cardinality of A is 4*
- $|A| = 4$

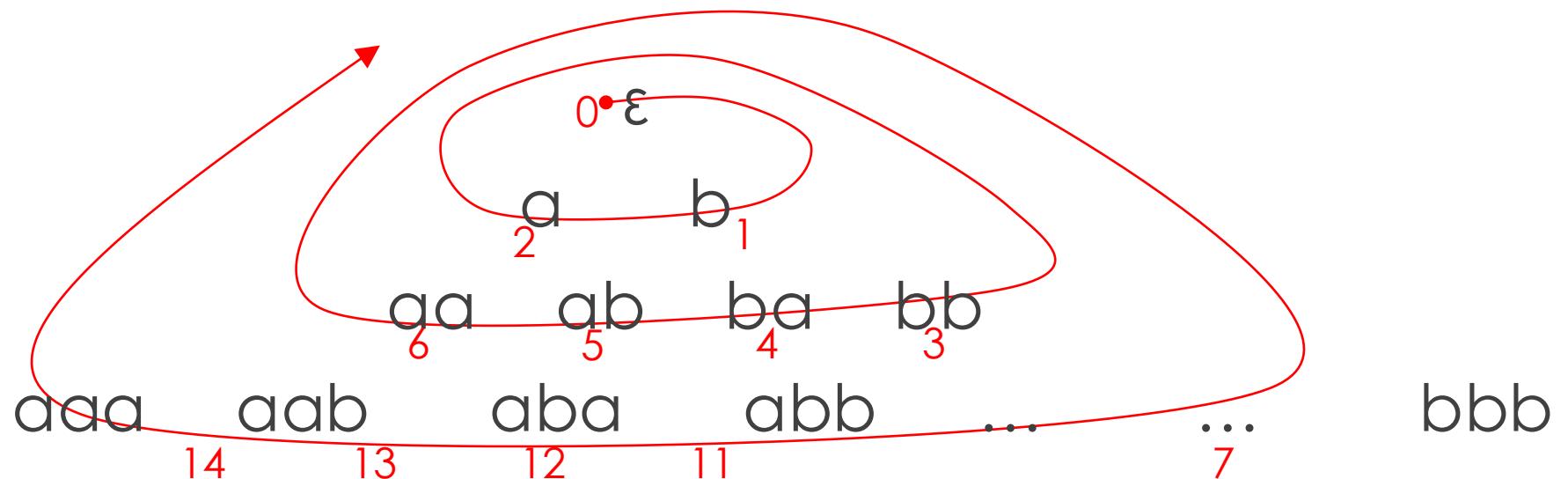
But what about those with infinite elements? For example, what is the cardinality of a language- L made up of binary words?


Countable Sets

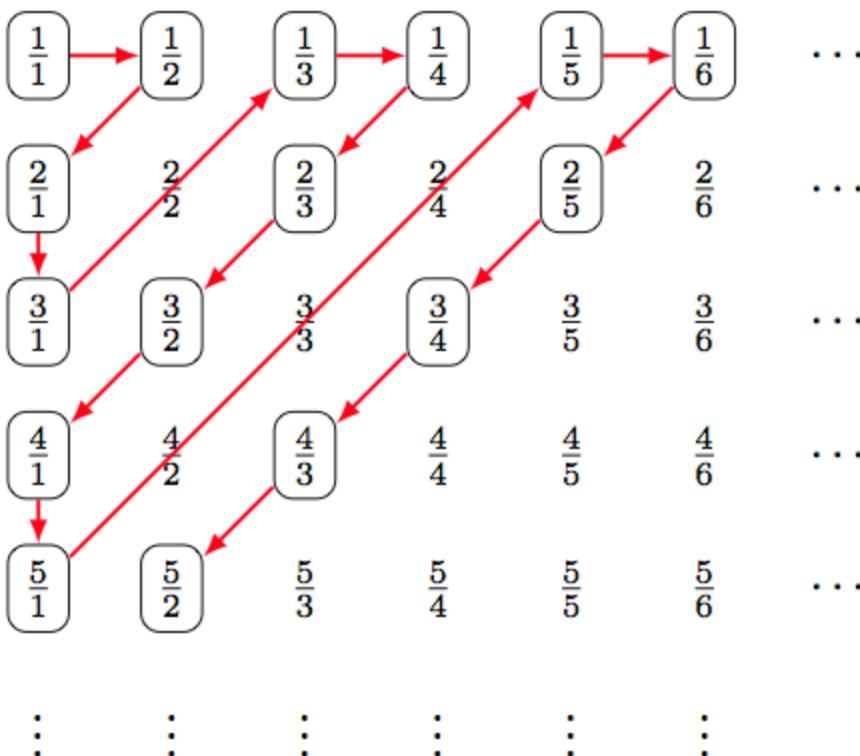
- ✓ Any set X with cardinality less than that of the natural numbers is said to be a **countable** (finite) set.
- ✓ Any set X that has the same cardinality as the set of the natural numbers is said to be a **countable** (countably infinite) set.
- ✓ Any set X with cardinality greater than that of the natural numbers is said to be **uncountable**.

We will focus on counting using **Natural numbers**.

Countable Sets


✓ The set of integer numbers is **Countable**.

Countable Sets


✓ The set of Kleene star (Σ^*) is **Countable**.

✓ $\Sigma = \{a, b\}$

$$\Sigma^* = \{\varepsilon, a, b, aa, ab, ba, bb, aaa, \dots\}$$

Countable Sets

✓ The set of rational numbers is **Countable**.

$$f(N) \rightarrow f(Q)$$

$$f(0) \rightarrow f(1/1)$$

$$f(1) \rightarrow f(1/2)$$

$$f(2) \rightarrow f(2/1)$$

$$f(3) \rightarrow f(3/1)$$

$$f(4) \rightarrow f(1/3)$$

$$f(5) \rightarrow f(1/4)$$

...

Countable Sets

- ✓ What about the set of **real numbers**?
- ✓ Is it a **countable** set?
- ✓ Did you hear Cantor's diagonal argument?

Countable Sets

✓ Cantor's diagonal argument about **real numbers**

Natural	Real
0	0.236436775676...
1	0.098473294543...
2	0.193214042202...
3	0.843279242093...
4	0.012934812343...
5	0.639423412934...
6	0.017773923845...
7	0.238920090909...
8	0.123984732999...
9	0.646329878122...
10	0.000123943437...
11	0.981298312892...
⋮	⋮

In this list, we wrote all numbers between [0 1].
Infinite numbers with each line of infinite length.

Countable Sets

✓ Cantor's diagonal argument on **real numbers**

Natural	Real	
0	0.236436775676...	
1	0.098473294543...	Can we find a new number?
2	0.193214042202...	
3	0.843279242093...	
4	0.012934812343...	
5	0.639423412934...	
6	0.017773923845...	Let's select the symbols on
7	0.238920090909...	the diagonal in red.
8	0.123984732999...	
9	0.646329878122...	
10	0.000123943437...	
11	0.981298312892...	
⋮	⋮	
	<u>0.293233992132...</u>	→ ???

Countable Sets

✓ Cantor's diagonal argument on **real numbers**

Natural	Real
0	0.236436775676...
1	0.098473294543...
2	0.193214042202...
3	0.843279242093...
4	0.012934812343...
5	0.639423412934...
6	0.017773923845...
7	0.238920090909...
8	0.123984732999...
9	0.646329878122...
10	0.000123943437...
11	0.981298312892...
⋮	⋮
	0.293233992132...

Can we find **a new number**?

Let's select the symbols on
the diagonal in red.

→ it is probably somewhere up

Countable Sets

✓ Cantor's diagonal argument on **real numbers**

Natural	Real
0	0.236436775676...
1	0.098473294543...
2	0.193214042202...
3	0.843279242093...
4	0.012934812343...
5	0.639423412934...
6	0.017773923845...
7	0.238920090909...
8	0.123984732999...
9	0.646329878122...
10	0.000123943437...
11	0.981298312892...
⋮	⋮
	0.293233992132...
	0.746894310875...

If we change symbols in red
→ we find a new number

Countable Sets

- ✓ If Cantor's diagonal argument is applied on the set of all languages over a finite alphabet such as binary symbols

$s_1 : 0000000\dots$

$s_2 : 1111111\dots$

$s_3 : 0101010\dots$

$s_4 : 1010101\dots$

$s_5 : 1100110\dots$

$s_6 : 0011001\dots$

$s_7 : 1001001\dots$

$s_d : 0100101\dots$

$w_1 : aaaaaaaaa\dots$

$w_2 : bbbbbbb\dots$

$w_3 : abababa\dots$

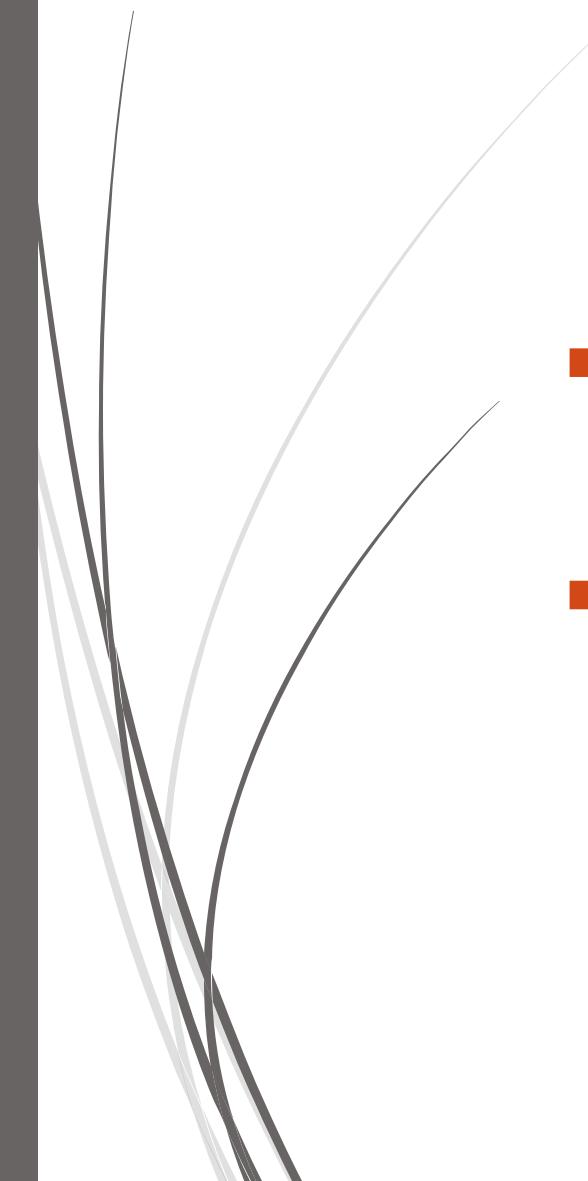
$w_4 : bababab\dots$

$w_5 : aabaaba\dots$

$w_6 : bbbabbb\dots$

$w_7 : aabaaba\dots$

$w_d : abaaaba\dots$


Countable vs. Enumerable

If P is Enumerable, then P is Countable.

$$\rightarrow (P \in E) \rightarrow (P \in C)$$

But not vice versa. Σ^* is countable, so all its subsets are countable.

If every countable language were enumerable, then every language would be decidable.

- ➡ That's all.
- ➡ Thanks for listening.