
Theory of Computation
Lesson 2

Non-Deterministic Finite State Automata

Why we need Non-Deterministic

Automata ?

 Non-deterministic finite automata (NFA) focus on how

they accept the inputs. For this reason, NFA are smaller
and easier to construct than deterministic finite

automata (DFA).

 NFA are used for humans, DFA are prepared for

machines.

 Besides, they are equivalent to each other. Thus, we can

solve especially difficult problems in NFA, then convert
into DFA.

There are 3 types of uncertainty to use in NFA:

 1. Additional out-goings edges,

 2. Undefined out-going edges,

 3. Arbitrarily out-going edges.

Uncertainties in NFA

We now come to the formal definition of a NFA.

Formal Definition

A = {w : w is a binary string containing 101 or 11 as a substring}.

Here, our alphabet will be binary Σ = {0, 1}. Then we should find
the states at first.

We can directly focus on 101 and 11 strings. We can design
them two different sub solution, but if you can see, they have a
common solution.

A first example

When we design states, we can define their workings as follows:

 q1 : start state

 q2 : first symbol is OK, it doesn’t matter 101 or 11

 q3 : second symbol is OK for 101 or directly pass for 11

 q4 : last symbol is OK

A first example

Now, we can run the NFA defined for input 010110

A first example

A = {w ∈ {0,1}∗ : w has a 1 in the third position from the RIGHT}

 This problem is easier than the one in DFA. Again, we can focus
to design solution directly.

 {0,1}* 1 {0,1} {0,1}

 In the previous solution, there was a concept used to mean
"whatever symbol comes" in start and end states. We will
use this solution, shown on the right, in this question as well.

A second example

 q1: Both the initial state and the time elapsed state until the third letter
from the right

 q2: 3rd symbol from the right came

 q3: 2nd symbol from the right came

 q4: The last symbol from the right came

A second example

A = {0k : k ≡ 0 mod 2 or k ≡ 0 mod 3}

 The string can contain only 0 symbols. We can accept the
string when its length is a multiple of two or three.

 00 00 00 00 00 … or 000 000 000 000 000 …

 If we misunderstand the question here and create a common
solution to the two problems, the following problem may arise:

{(00)or(000)}* Then this wrong solution may mistakenly accept
the following string.

 00 000 00 00 00 X

A third example

In fact, this solution is the union of the two
languages.

A = A1 U A2

A1 accepts the strings when their lengths are
multiple of two. A2 accepts when the length
is multiple of three.

A third example

That’s all.

Thanks for listening.

	Slide 1: Theory of Computation Lesson 2
	Slide 2: Why we need Non-Deterministic Automata ?
	Slide 3: Uncertainties in NFA
	Slide 4: Formal Definition
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

