0,1

Theory of Computation

Lesson 2

Non-Deterministic Finite State Automata

\

Why we need Non-Deterministic
Automarta ¢

= Non-deterministic finite automata (NFA) focus on how
they accept the inputs. For this reason, NFA are smaller
and easier to construct than deterministic finite
automata (DFA).

®» NFA are used for humans, DFA are prepared for
machines.

» Besides, they are equivalent to each other. Thus, we can
solve especially difficult problems in NFA, then convert
info DFA.

Uncertainties in NFA

There are 3 types of uncertainty to use in NFA:
= |, Additional out-goings edges,

» 7. Undefined out-going edges,

. Arbitrarily out-going edges.

0.1
| 0.€ |

Formal Definition

We now come to the formal definition of a NFA.

Definition 2.4.1 A nondeterministic finite automaton (NFA) is a S-tuple
M = (Q,%.,0,q, F), where

1. @ 1s a hnite set, whose elements are called states,

2. X 1s a finite set, called the alphabet; the elements of X are called symbols.
3.0:0Q x X, = P(Q) is a function, called the transition function,
4. g 1s an element of Q; 1t 1s called the start state,

. F 15 a subset of (); the elements pf F* are called accept states.

A first example

A ={w . wis a binary string containing 101 or 11 as a substring}.

Here, our alphabet will be binary ¥ = {0, 1}. Then we should find
the states af first.

e can directly focus on 101 and 11 strings. We can design
them two different sub solution, but if you can see, they have a
common solution.

A first example

When we design states, we can define their workings as follows:
» Q, . starf state

® q, . first symbol is OK, it doesn’t matter 101 or 11

: second symbol is OK for 101 or directly pass for 11

. last symbol is OK

A first example (o) —~(@)——e) (@) o
Now, we can run the NFA defined for input 010110

QI — (]

/ \24'*633

q1 4-— q1 93 —hang

Qz — hang

€
l 1

9B —— > g4 ——> 4

4 a1 g 9 Ly
1 /
0

92 >3 » hang

q1 —» 41

A second example

A ={w €e{0,1}x:whasa 1in the third position from the RIGHT}

» This problem is easier than the one in DFA. Again, we can focus
design solutfion directly.

{0,1}* 1 {O,1} {O,1}
0,1
® |n the previous solution, there was a concept used o mean

"whatever symbol comes"” in start and end states. We will
\ use this solution, shown on the right, in this question as well. @

A second example

from the right
= Qg,: 3rd symbol from the right came
= (5. 2nd symbol from the right came
4. The last symbol from the right came

0.1

= q,: Both the initial state and the time elapsed state until the third letter

A third example

A={0:k=0mod 2 ork =0 mod 3}

» The string can contain only O symbols. We can accept the
string when its length is a multiple of two or three.

00 00 00 00 00 ... or 000 000 000 000 000 ...

® |f we misunderstand the question here and create a common
solution to the two problems, the following problem may arise:
{{00)or(000)}* Then this wrong solution may mistakenly accept
the following string.

00 000 00 00 00 X

A third example

/@ L/; In fact, this solution is the union of the two
languages.

A=A UA,

A, accepts the strings when their lengths are
muITipIe of two. A, accepts when the length
“)\ 0 “\ Is multiple of three.

0

J

» That's all.

» Thanks for listening.

	Slide 1: Theory of Computation Lesson 2
	Slide 2: Why we need Non-Deterministic Automata ?
	Slide 3: Uncertainties in NFA
	Slide 4: Formal Definition
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

