

	0	1
\emptyset	\emptyset	\emptyset
A	{B,C}	A
B	\emptyset	{B,C}
C	C	C
{A,B}	{B,C}	{A,B}
{B,C}	C	{B,C}
{A,C}	{B,C}	{A,C}
{A,B,C}	{B,C}	{A,B,C}

Theory of Computation

Lesson 3

Converting a NFA to a DFA

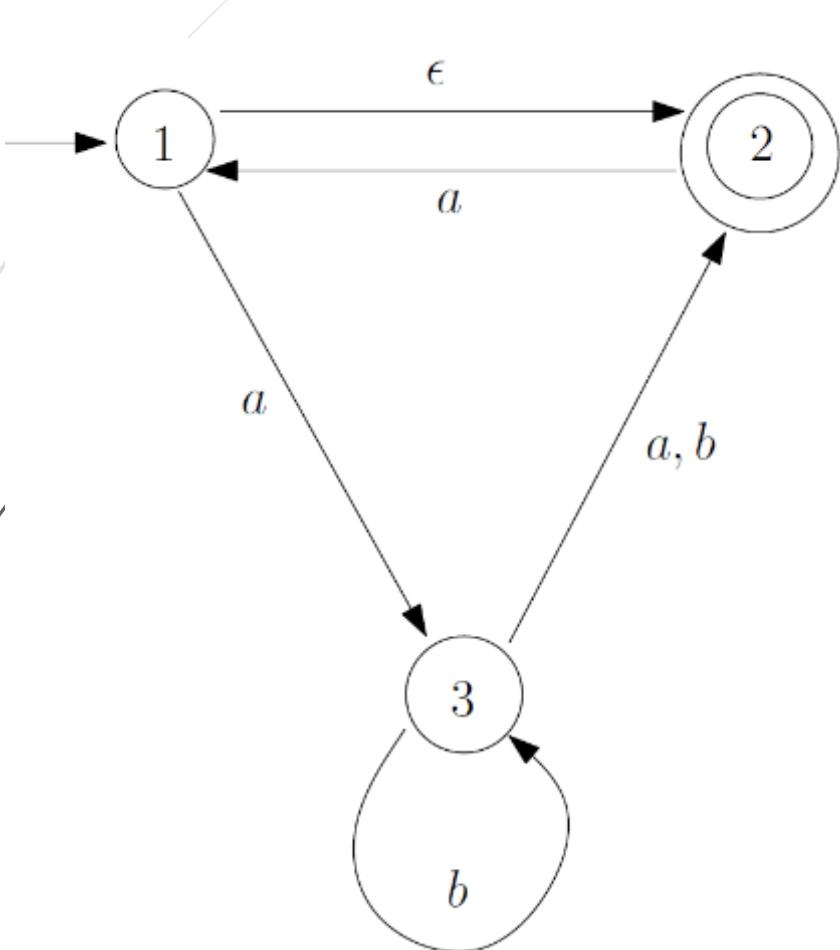
Equivalence of DFAs and NFAs

- ▶ You may have the impression that nondeterministic finite automata are more powerful than deterministic finite automata.
- ▶ In this section, we will show that this is not the case. That is, we should know that a language can be accepted by a DFA if and only if it can be accepted by an NFA.
- ▶ What about converting a DFA to an NFA? Well, there is nothing to do, because a DFA is also an NFA.

Converting a NFA to a DFA

Theorem 2.5.1 *Let $N = (Q, \Sigma, \delta, q, F)$ be a nondeterministic finite automaton. There exists a deterministic finite automaton M , such that $L(M) = L(N)$.*

Let the DFA M be defined as $M = (Q', \Sigma, \delta', q', F')$, where


- the set Q' of states is equal to $Q' = \mathcal{P}(Q)$; observe that $|Q'| = 2^{|Q|}$,
- the start state q' is equal to $q' = \{q\}$; so M has the “same” start state as N ,
- the set F' of accept states is equal to the set of all elements R of Q' having the property that R contains at least one accept state of N , i.e.,

$$F' = \{R \in Q' : R \cap F \neq \emptyset\},$$

- the transition function $\delta' : Q' \times \Sigma \rightarrow Q'$ is defined as follows: For each $R \in Q'$ and for each $a \in \Sigma$,

$$\delta'(R, a) = \bigcup_{r \in R} \delta(r, a).$$

NFA to DFA example

	a	b	ϵ
1	{3}	\emptyset	{2}
2	{1}	\emptyset	\emptyset
3	{2}	{2, 3}	\emptyset

NFA to DFA example

First, set of states Q' is easily determined by using power set of Q .

$$Q' = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}.$$

Writing the start state q' is also simple.

$$q' = C_\epsilon(\{q\}) = C_\epsilon(\{1\}) = \{1, 2\}.$$

The third one, to find new accept states.

$$F' = \{\{2\}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}\}.$$

	a	b	ϵ
1	$\{3\}$	\emptyset	$\{2\}$
2	$\{1\}$	\emptyset	\emptyset
3	$\{2\}$	$\{2, 3\}$	\emptyset

NFA to DFA example

Now, it is time to define δ'

$$\delta'(\emptyset, a) = \emptyset \quad \delta'(\emptyset, b) = \emptyset$$

$$\delta'(\{1\}, a) = \{3\} \quad \delta'(\{1\}, b) = \emptyset$$

$$\delta'(\{2\}, a) = \{1, 2\} \quad \delta'(\{2\}, b) = \emptyset$$

$$\delta'(\{3\}, a) = \{2\} \quad \delta'(\{3\}, b) = \{2, 3\}$$

$$\delta'(\{1, 2\}, a) = \{1, 2, 3\} \quad \delta'(\{1, 2\}, b) = \emptyset$$

$$\delta'(\{1, 3\}, a) = \{2, 3\} \quad \delta'(\{1, 3\}, b) = \{2, 3\}$$

$$\delta'(\{2, 3\}, a) = \{1, 2\} \quad \delta'(\{2, 3\}, b) = \{2, 3\}$$

$$\delta'(\{1, 2, 3\}, a) = \{1, 2, 3\} \quad \delta'(\{1, 2, 3\}, b) = \{2, 3\}$$

NFA to DFA example

- First, write all the elements of the Q' as the labels of rows and Σ as the label of columns.

	a	b	ϵ
1	$\{3\}$	\emptyset	$\{2\}$
2	$\{1\}$	\emptyset	\emptyset
3	$\{2\}$	$\{2, 3\}$	\emptyset

	a	b
\emptyset		
$\{1\}$		
$\{2\}$		
$\{3\}$		
$\{1, 2\}$		
$\{1, 3\}$		
$\{2, 3\}$		
$\{1, 2, 3\}$		

NFA to DFA example

The first row in the table should be filled with empty sets. It will be our black hole reject state.

	a	b	ϵ
1	{3}	\emptyset	{2}
2	{1}	\emptyset	\emptyset
3	{2}	{2, 3}	\emptyset

	a	b
\emptyset	\emptyset	\emptyset
{1}		
{2}		
{3}		
{1,2}		
{1,3}		
{2,3}		
{1,2,3}		

NFA to DFA example

Then import the partition matching the NFA into the table exactly.

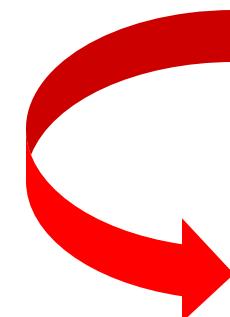
	a	b	ϵ
1	{3}	\emptyset	{2}
2	{1}	\emptyset	\emptyset
3	{2}	{2, 3}	\emptyset

	a	b
\emptyset	\emptyset	\emptyset
{1}	{3}	\emptyset
{2}	{1}	\emptyset
{3}	{2}	{2, 3}
{1, 2}		
{1, 3}		
{2, 3}		
{1, 2, 3}		

NFA to DFA example

Now, use the ϵ column and update the section you just filled out.

	a	b	ϵ
1	{3}	\emptyset	{2}
2	{1}	\emptyset	\emptyset
3	{2}	{2, 3}	\emptyset



	a	b
\emptyset	\emptyset	\emptyset
{1}	{3}	\emptyset
{2}	{1,2}	\emptyset
{3}	{2}	{2,3}
{1,2}		
{1,3}		
{2,3}		
{1,2,3}		

NFA to DFA example

Last, fill the empty elements by using union operation among the filled elements.

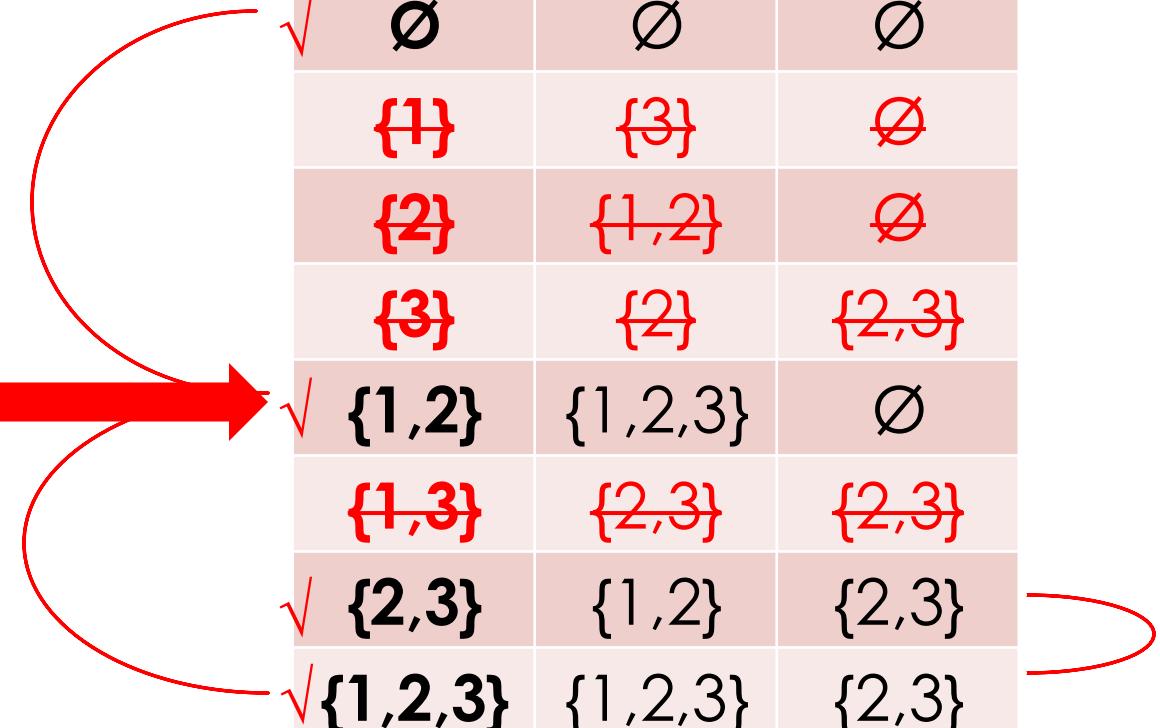
	a	b	ϵ
1	{3}	\emptyset	{2}
2	{1}	\emptyset	\emptyset
3	{2}	{2, 3}	\emptyset

	a	b
\emptyset	\emptyset	\emptyset
{1}	{3}	\emptyset
{2}	{1,2}	\emptyset
{3}	{2}	{2,3}
{1,2}	{1,2,3}	\emptyset
{1,3}	{2,3}	{2,3}
{2,3}	{1,2}	{2,3}
{1,2,3}	{1,2,3}	{2,3}

NFA to DFA example

Now our DFA solution is ready. However, this may also include some unnecessary states. We can make an optimization so that we can delete unnecessary states.

$q' = \{1,2\}$

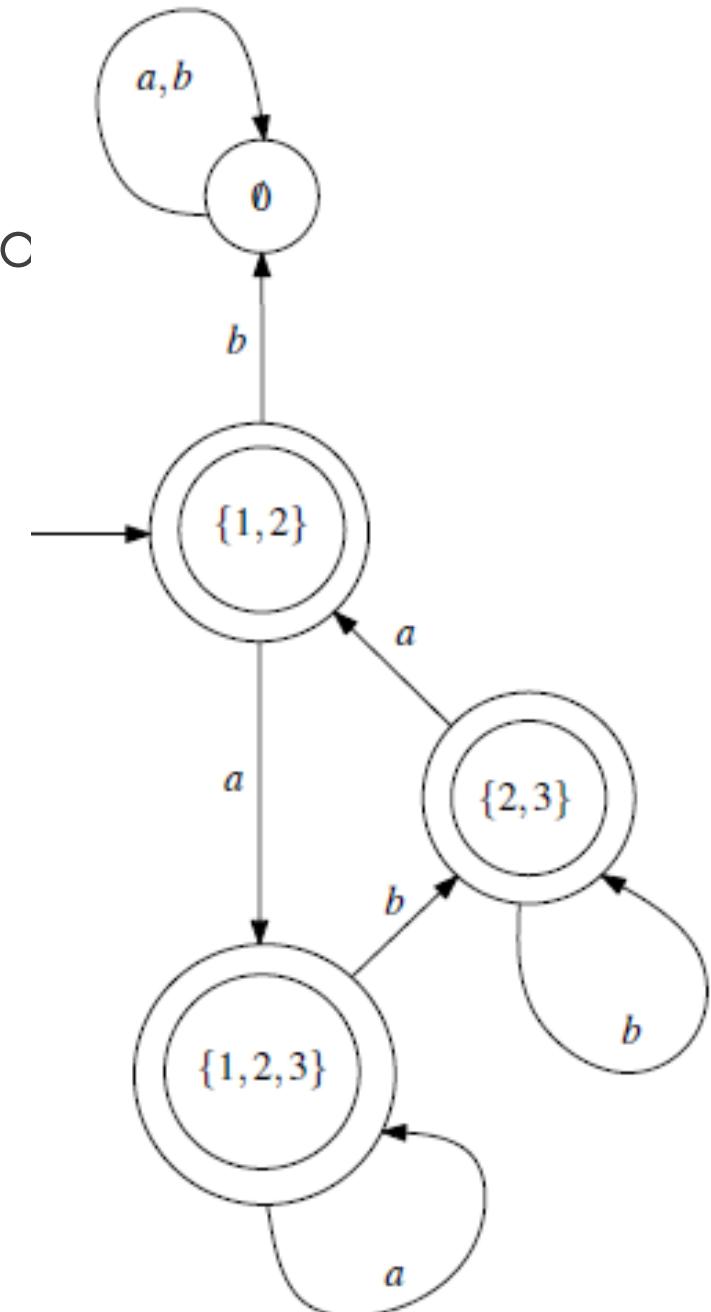

	a	b
\emptyset	\emptyset	\emptyset
$\{1\}$	$\{3\}$	\emptyset
$\{2\}$	$\{1,2\}$	\emptyset
$\{3\}$	$\{2\}$	$\{2,3\}$
$\{1,2\}$	$\{1,2,3\}$	\emptyset
$\{1,3\}$	$\{2,3\}$	$\{2,3\}$
$\{2,3\}$	$\{1,2\}$	$\{2,3\}$
$\{1,2,3\}$	$\{1,2,3\}$	$\{2,3\}$

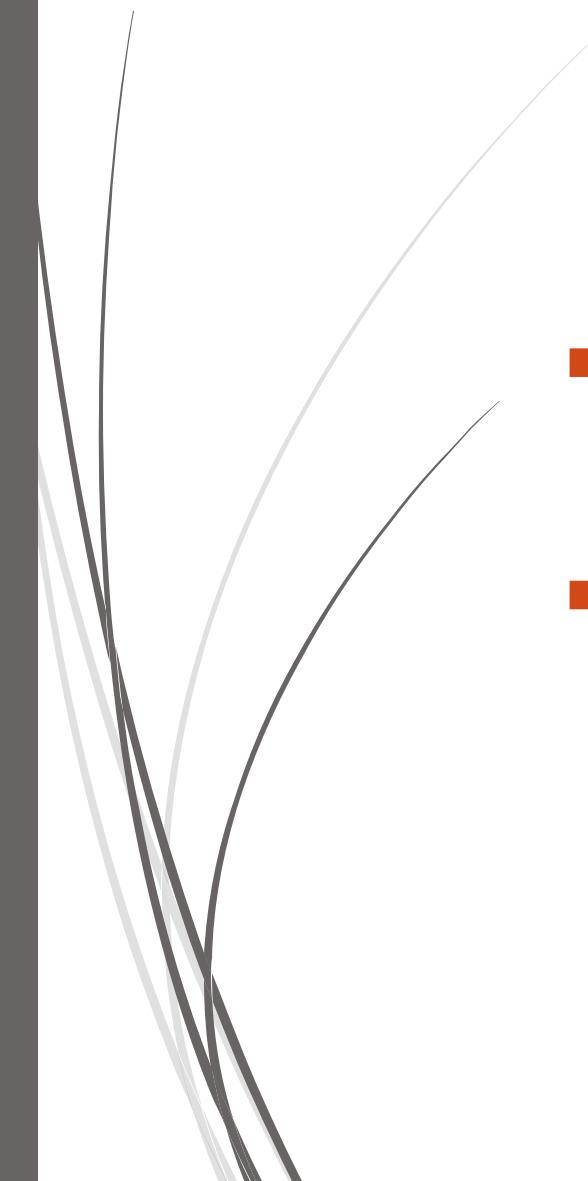
NFA to DFA example

Finally, we found a DFA with only four states. Now we can draw its transition diagram.

$q' = \{1, 2\}$

$F' = [\cancel{\{2\}}, \{1, 2\}, \{2, 3\}, \{1, 2, 3\}]$


NFA to DFA example


Here, we have both the table and the transition diagram of the DFA solution.

$$q' = \{1, 2\}$$

$$F' = [\{1, 2\}, \{2, 3\}, \{1, 2, 3\}]$$

	a	b
\emptyset	\emptyset	\emptyset
$\{1, 2\}$	$\{1, 2, 3\}$	\emptyset
$\{2, 3\}$	$\{1, 2\}$	$\{2, 3\}$
$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2, 3\}$

-
-
- ➡ That's all.
 - ➡ Thanks for listening.