

Theory of Computation

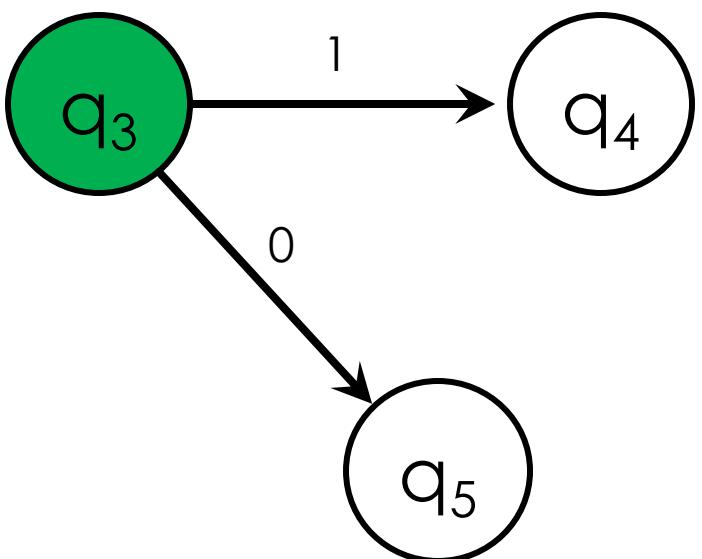
Lesson 6

Converting DFA to RegEx

DFA to RegEx

In this transformation approach, unlike the others, outgoing transitions of each state are modeled.

Finally, the aim is to reach a reduced expression for the start state.



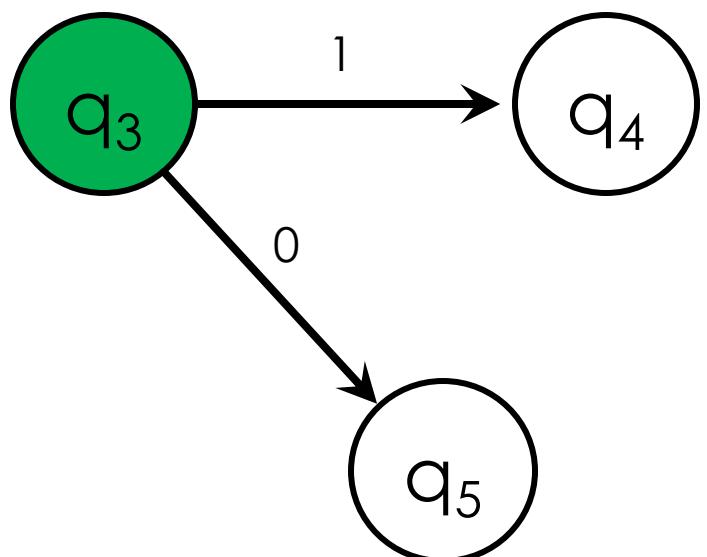
$$L_r = \bigcup_{a \in \Sigma} a \cdot L_{\delta(r,a)} \quad \text{if } r \notin F$$

$$L_r = \epsilon \cup \left(\bigcup_{a \in \Sigma} a \cdot L_{\delta(r,a)} \right) \quad \text{if } r \in F$$

DFA to RegEx

In the example below, let's just focus on the q_3 state. When modeling the state for RegEx, an expression is written for each outgoing as

"Symbol concatenation Target State".

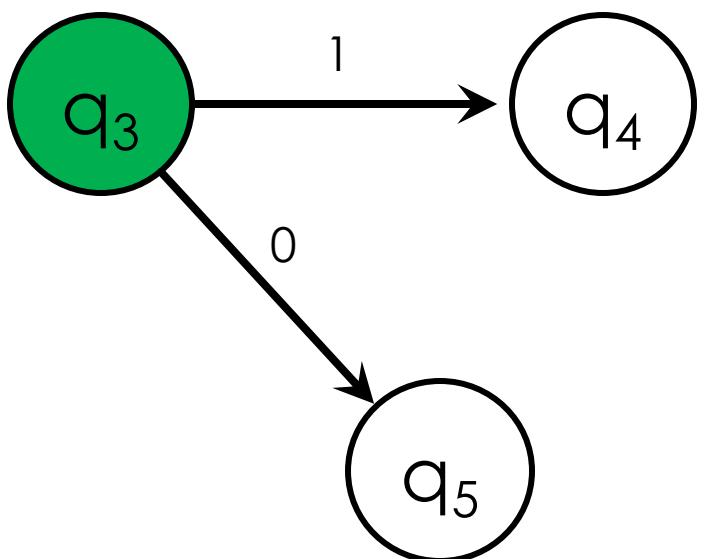


$$L_r = \bigcup_{a \in \Sigma} a \cdot L_{\delta(r,a)} \quad \text{if } r \notin F$$

$$L_r = \epsilon \cup \left(\bigcup_{a \in \Sigma} a \cdot L_{\delta(r,a)} \right) \quad \text{if } r \in F$$

DFA to RegEx

Since state q_3 is not an accept state, we will use the first rule.



$$L_r = \bigcup_{a \in \Sigma} a \cdot L_{\delta(r,a)} \quad \text{if } r \notin F$$

$$L_{q_3} = 1 \cdot L_{q_4} \cup 0 \cdot L_{q_5}$$

DFA to RegEx

But there is a problem here. If we continue with this approach, it will create a lot of recursion. That's why we need a solution for recursive expressions.

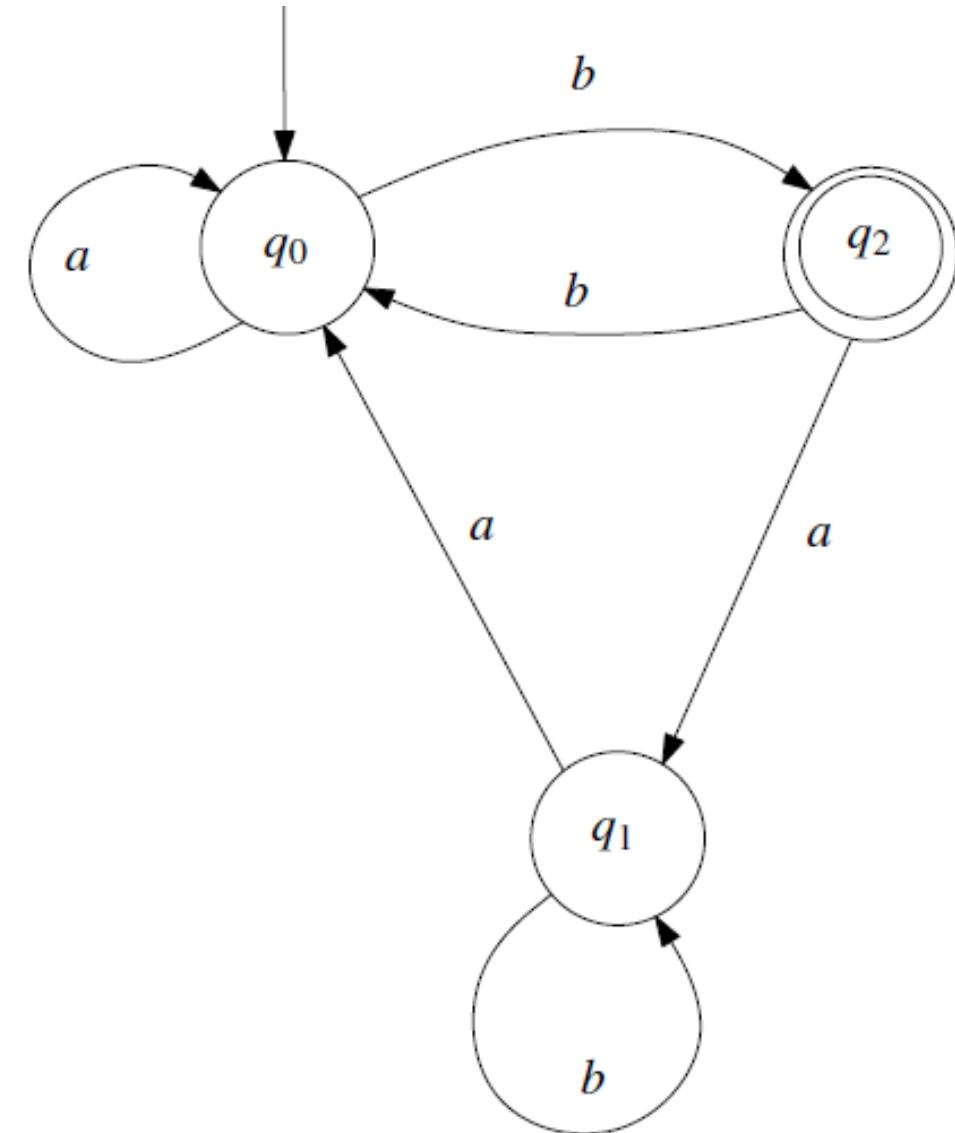
$$L = B \cdot L \cup C$$

$$L = B^* C$$

A first example

Let's transform the DFA transition diagram on the right into a regular expression.

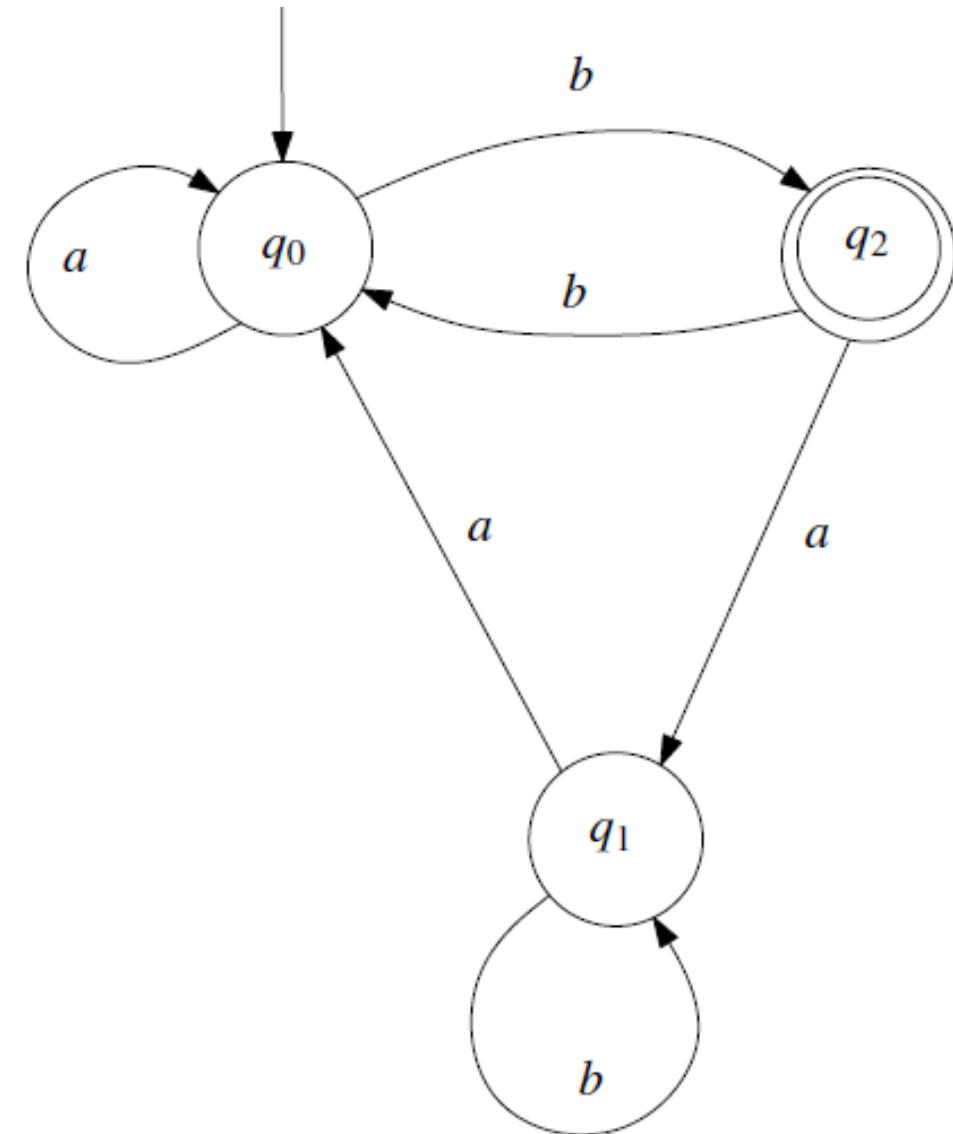
We must first start by modeling the expression of each state.



A first example

Our final goal is to write the reduced expression of the start state.

$$\begin{aligned} L_{q_0} &= a \cdot L_{q_0} \cup b \cdot L_{q_2} \\ L_{q_1} &= a \cdot L_{q_0} \cup b \cdot L_{q_1} \\ L_{q_2} &= \epsilon \cup a \cdot L_{q_1} \cup b \cdot L_{q_0} \end{aligned}$$



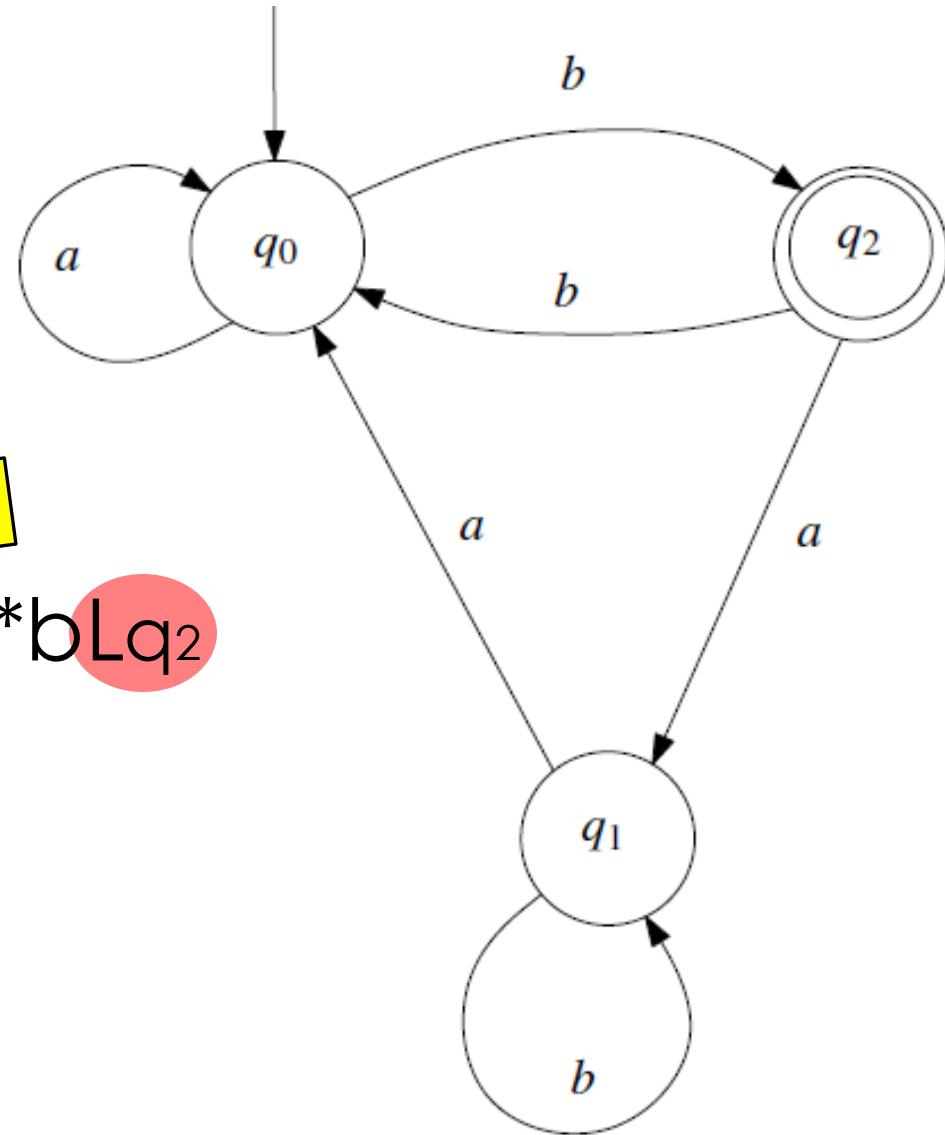
A first example

When we use our solution to clean up the recursions, these two expressions will turn into:

$$\begin{aligned}L_{q_0} &= a \cdot L_{q_0} \cup b \cdot L_{q_2} \\L_{q_1} &= a \cdot L_{q_0} \cup b \cdot L_{q_1} \\L_{q_2} &= \epsilon \cup a \cdot L_{q_1} \cup b \cdot L_{q_0}\end{aligned}$$

$$L = B \cdot L \cup C$$

$$a^* b L_{q_2}$$

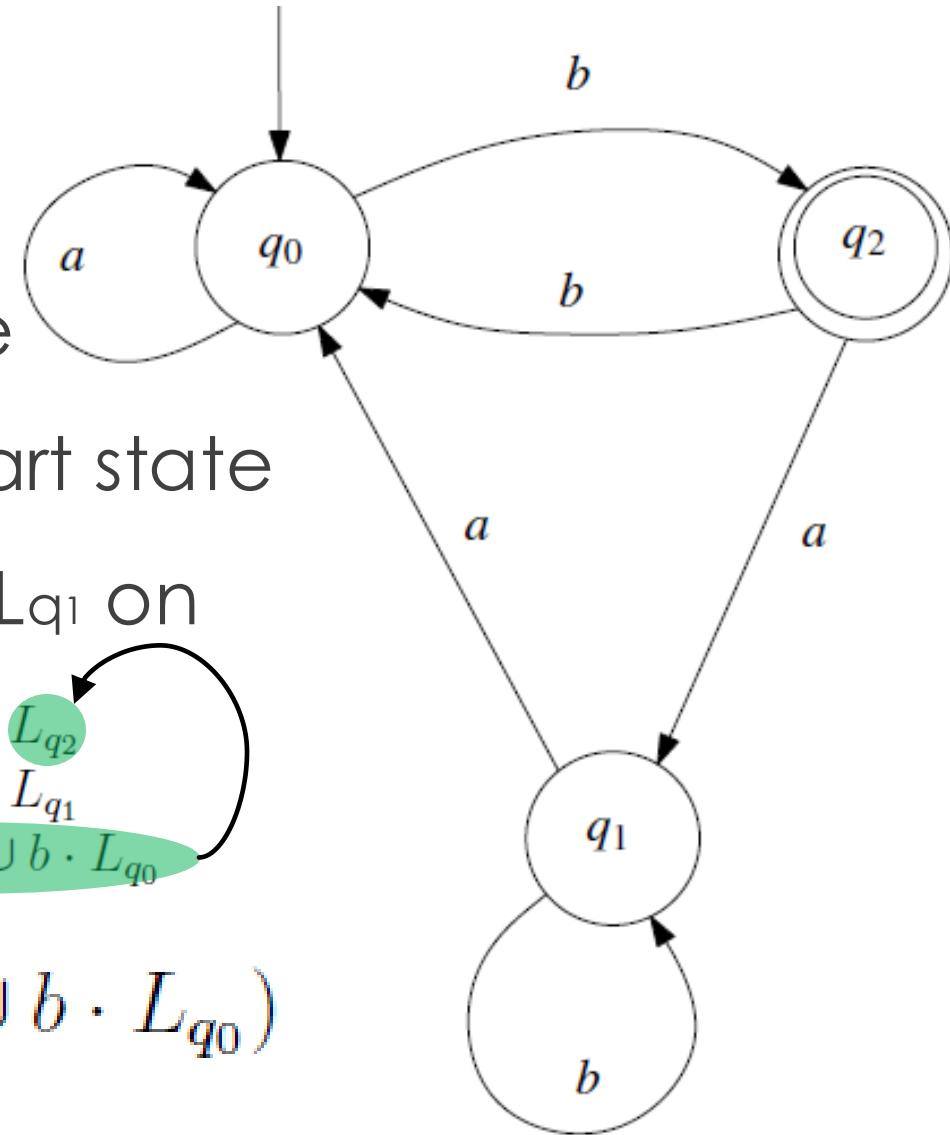


A first example

When we write the expression of the q_2 state instead of the variable L_{q_2} on the right hand side of the start state expression, we see the expression L_{q_1} on the right this time.

$$\begin{aligned}L_{q_0} &= a \cdot L_{q_0} \cup b \cdot L_{q_2} \\L_{q_1} &= a \cdot L_{q_0} \cup b \cdot L_{q_1} \\L_{q_2} &= \epsilon \cup a \cdot L_{q_1} \cup b \cdot L_{q_0}\end{aligned}$$

$$L_{q_0} = a \cdot L_{q_0} \cup b \cdot (\epsilon \cup a \cdot L_{q_1} \cup b \cdot L_{q_0})$$



A first example

After arranging the equation we have in common brackets, we will understand that we should get rid of the unwanted variable L_{q_1} .

$$\begin{aligned} L_{q_0} &= a \cdot L_{q_0} \cup b \cdot (\epsilon \cup a \cdot L_{q_1} \cup b \cdot L_{q_0}) \\ &= (a \cup bb) \cdot L_{q_0} \cup ba \cdot L_{q_1} \cup b. \end{aligned}$$



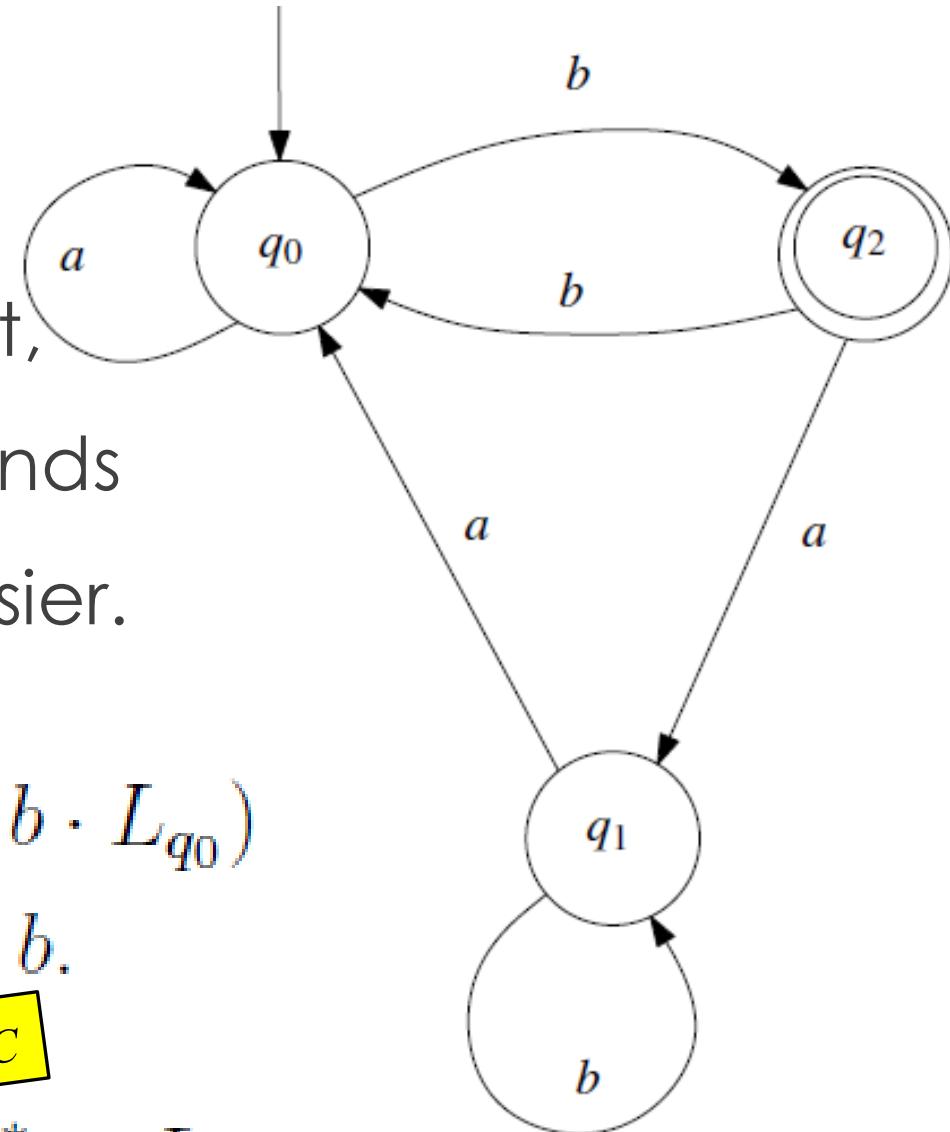
A first example

Fortunately, the L_{q_1} expression fits our recursive solution. Not only that, but the obtained expression depends only on L_{q_0} . This made our work easier.

$$L_{q_0} = a \cdot L_{q_0} \cup b \cdot (\epsilon \cup a \cdot L_{q_1} \cup b \cdot L_{q_0})$$

$$= (a \cup bb) \cdot L_{q_0} \cup ba \cdot L_{q_1} \cup b.$$

$$L_{q_1} = a \cdot L_{q_0} \cup b \cdot L_{q_1} \quad \xrightarrow{L = B \cdot L \cup C} \quad b^* a \cdot L_{q_0}$$



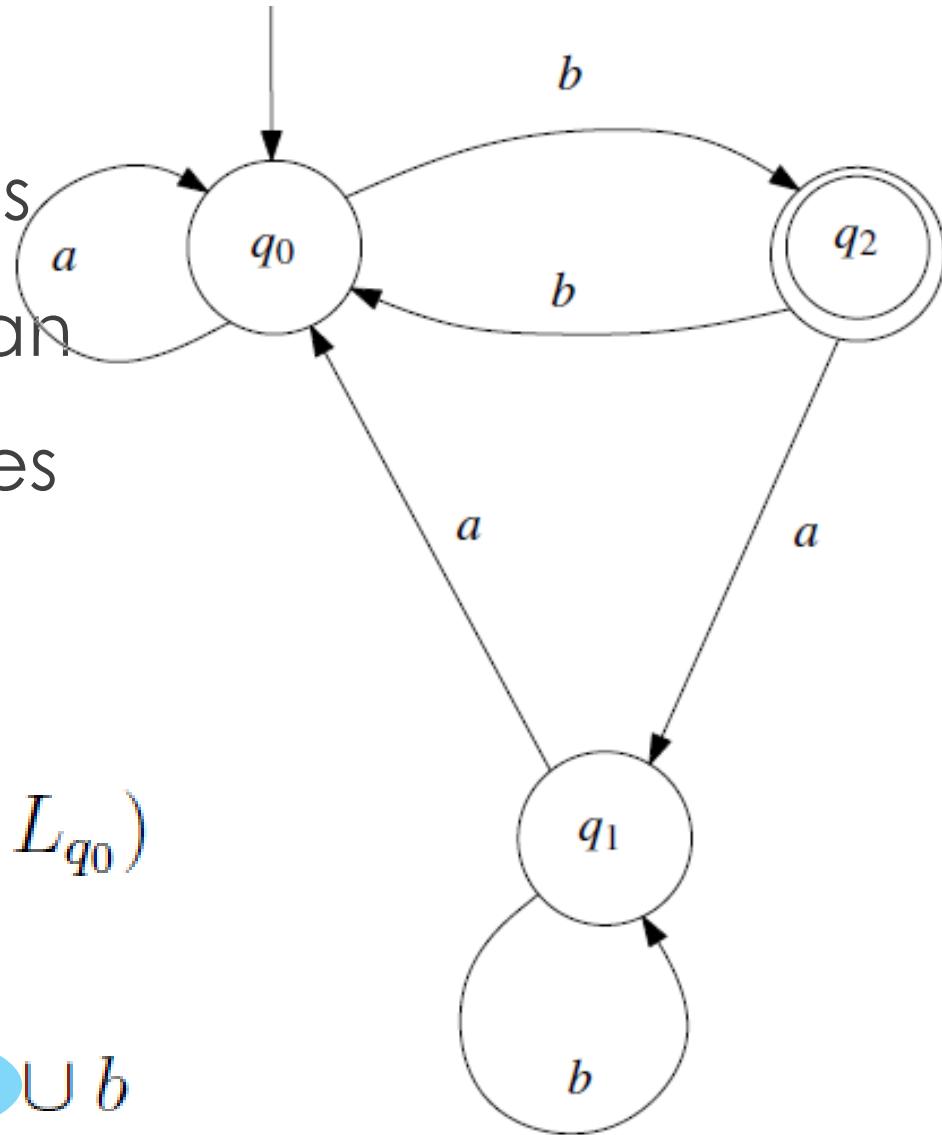
A first example

The simplified expression we have is dependent only on L_{q_0} . Now we can get rid of all our unwanted variables by doing the recursive solution.

$$L_{q_0} = a \cdot L_{q_0} \cup b \cdot (\epsilon \cup a \cdot L_{q_1} \cup b \cdot L_{q_0})$$

$$= (a \cup bb) \cdot L_{q_0} \cup ba \cdot L_{q_1} \cup b.$$

$$L_{q_0} = (a \cup bb) \cdot L_{q_0} \cup ba \cdot b^*a \cdot L_{q_0} \cup b$$



A first example

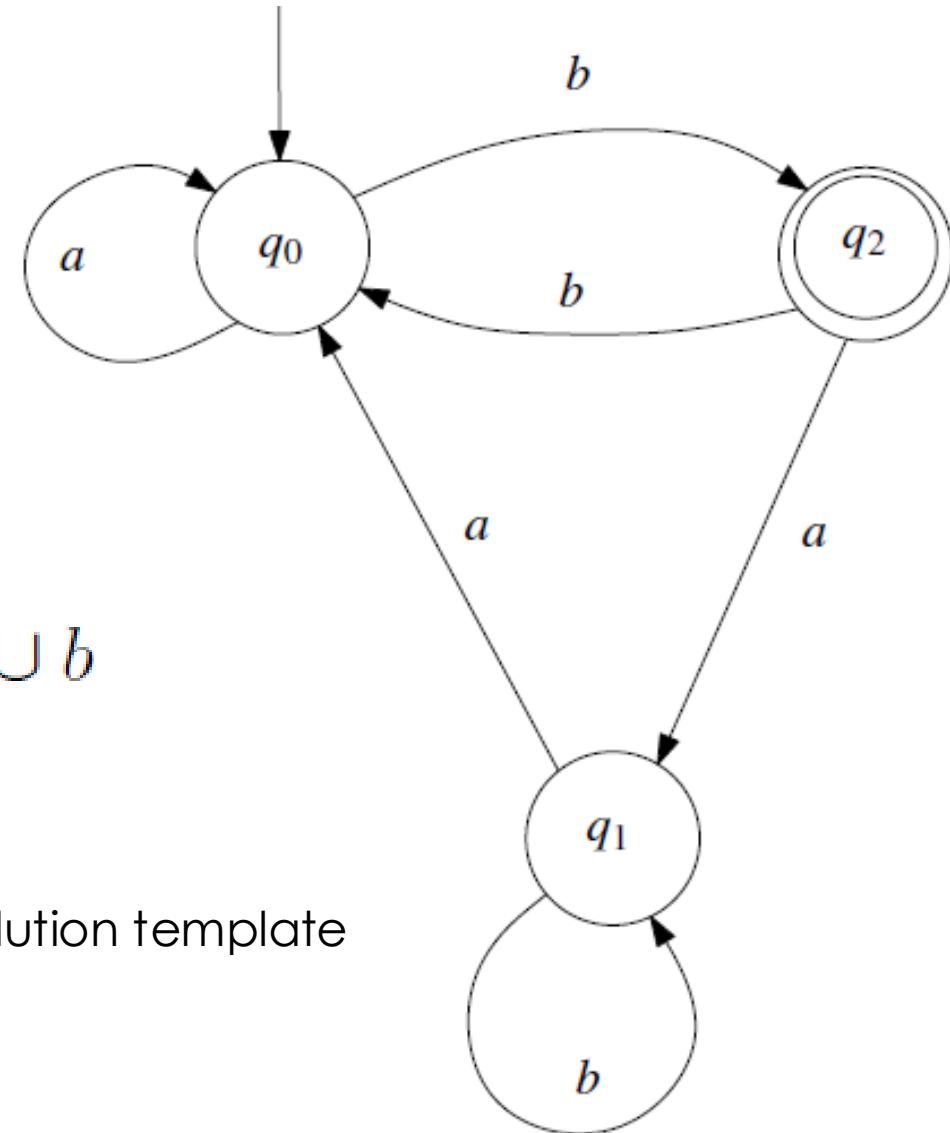
Finally, we obtained the regular expression of the DFA transition diagram on the right.

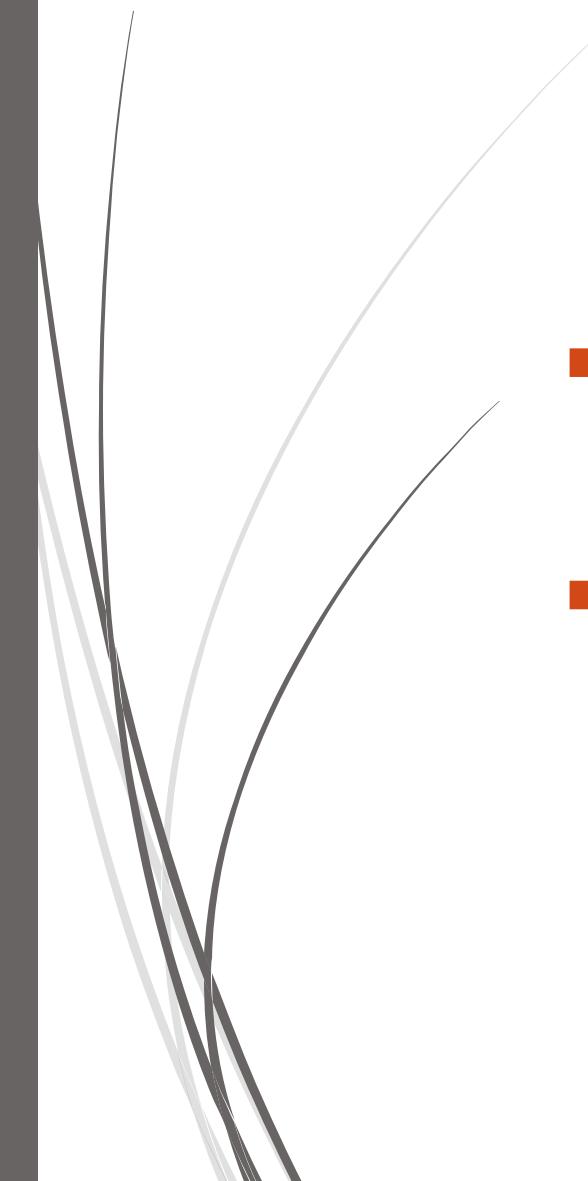
$$\begin{aligned} L_{q_0} &= (a \cup bb) \cdot L_{q_0} \cup ba \cdot b^*a \cdot L_{q_0} \cup b \\ &= (a \cup bb \cup bab^*a) L_{q_0} \cup b. \end{aligned}$$

$$L = B \cdot L \cup C$$

Remember our solution template

$$(a \cup bb \cup bab^*a)^* b$$





- ➡ That's all.
- ➡ Thanks for listening.