

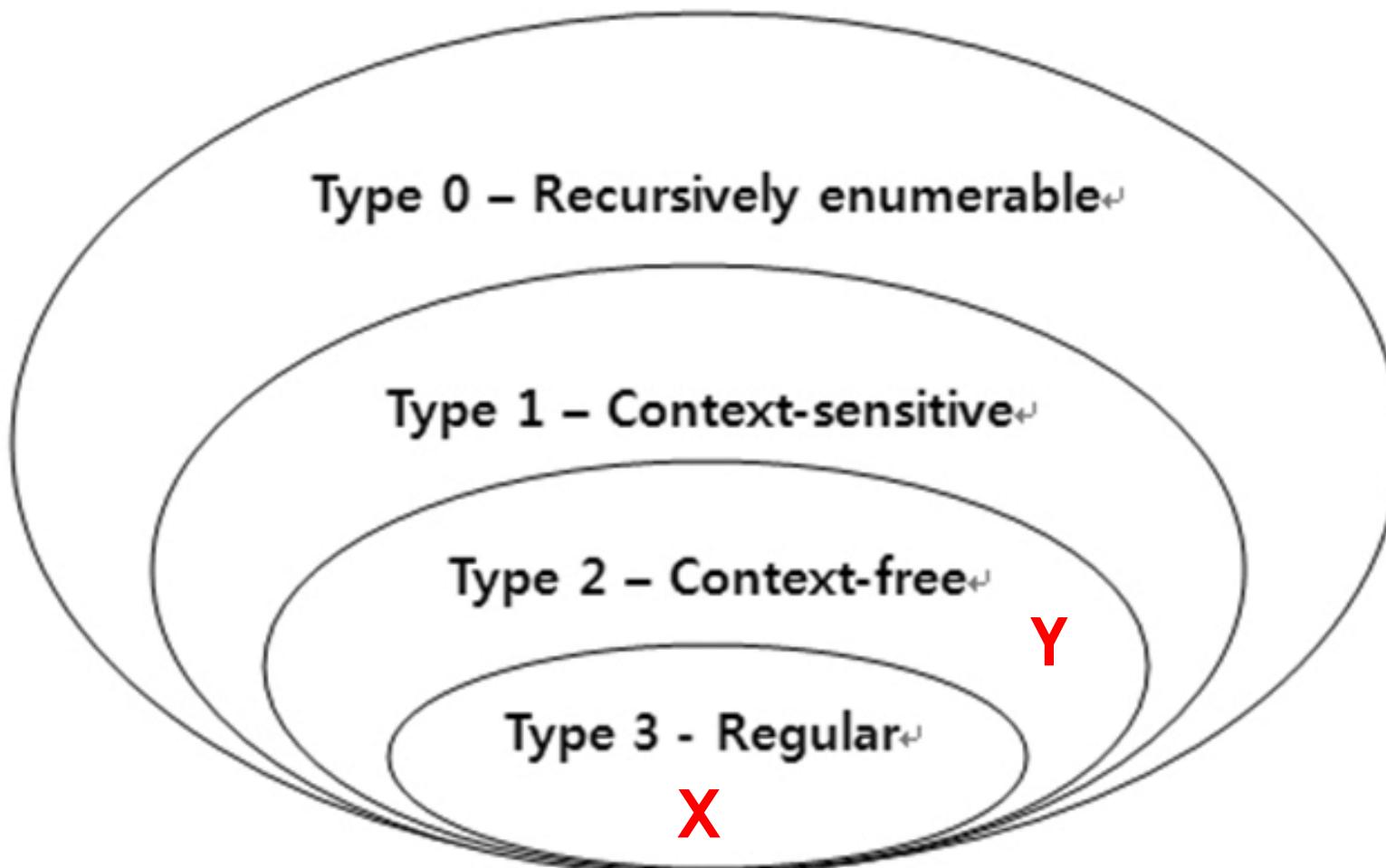
$$S \rightarrow SS \mid 1 \mid \epsilon$$

Theory of Computation

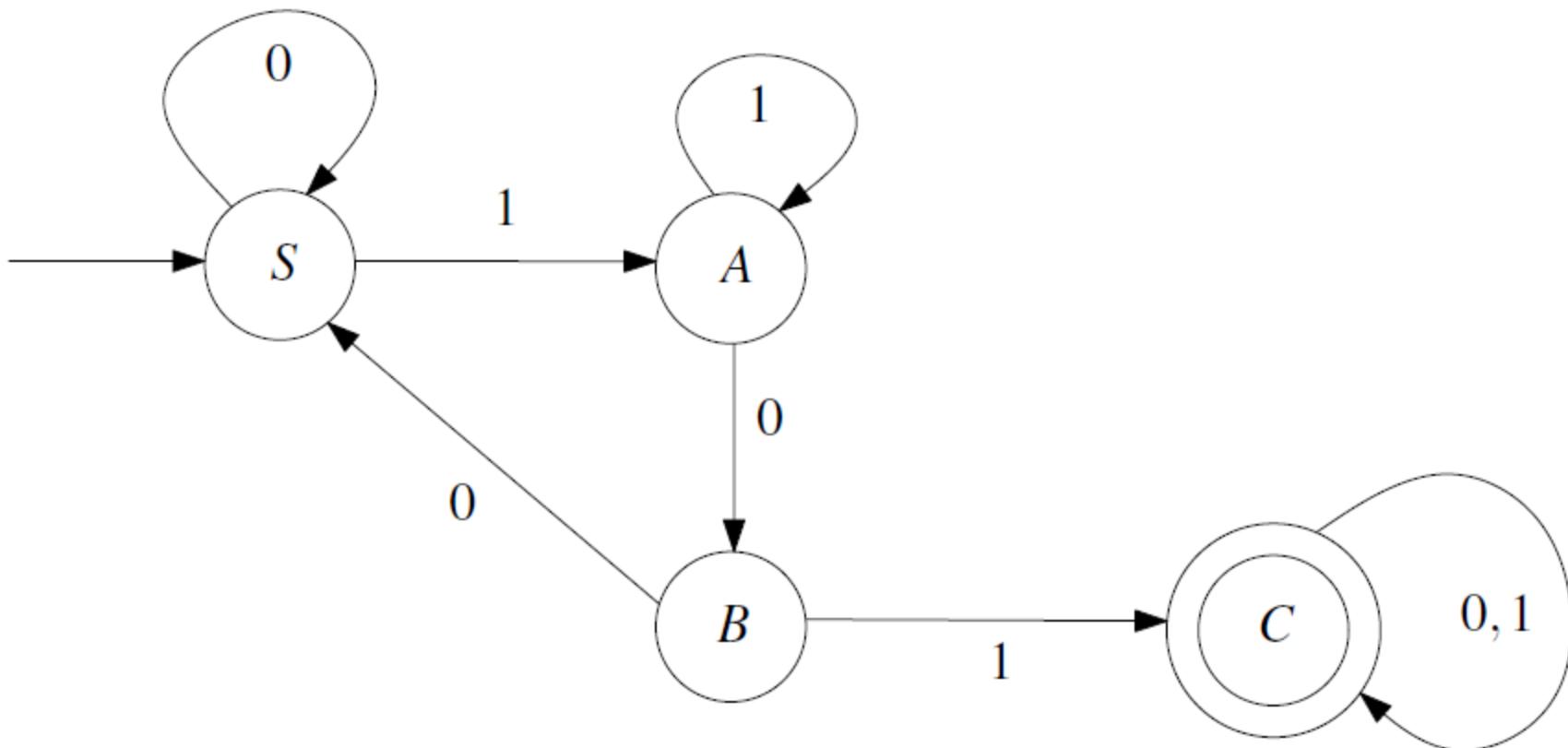
Lesson 8

Chomsky Normal Form

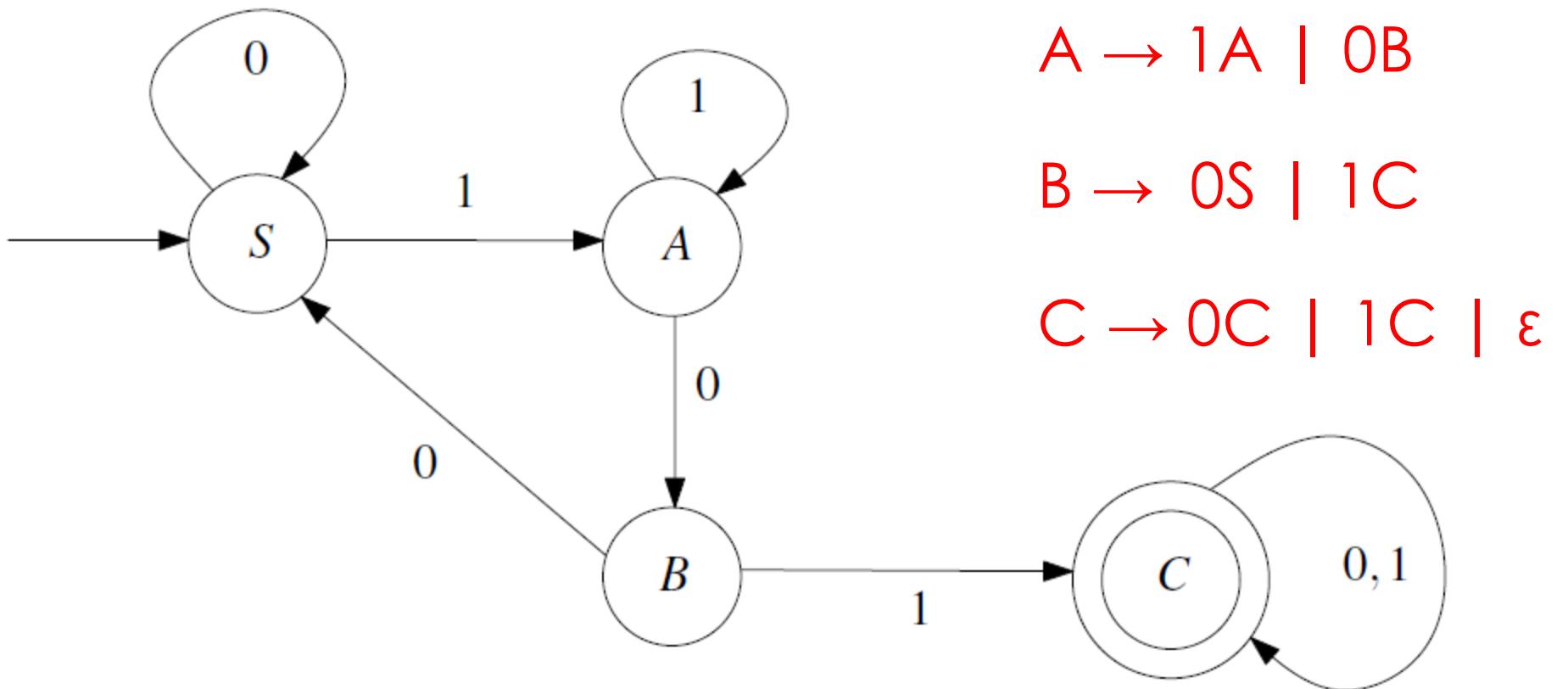
Regular languages are context-free



Regular languages are context-free



Regular languages are context-free



Chomsky normal form

Consider the following three grammar rules:

$$S \rightarrow SS \mid 1 \mid \epsilon$$

Using this grammar we can write a '1' symbol in different ways. For example, you can only use the second rule, or 1th, 2nd, 3rd rules respectively.

Chomsky normal form

How can we derivate '1' with this CFG?

	1	2	3
$S \rightarrow SS$		1	
ϵ			

$$S \xrightarrow{2} 1$$
$$S \xrightarrow{1} SS \xrightarrow{2} 1S \xrightarrow{3} 1$$
$$S \xrightarrow{1} SS \xrightarrow{1} SSS \xrightarrow{2} 1SS \xrightarrow{3} 1S \xrightarrow{3} 1$$
$$S \xrightarrow{1} SS \xrightarrow{1} SSS \xrightarrow{1} SSSS \xrightarrow{2} 1SSS \xrightarrow{3} 1SS \xrightarrow{3} 1S \xrightarrow{3} 1$$

...

Formal Definition

A context-free grammar $G = (V, \Sigma, R, S)$ is said to be in Chomsky normal form, if every rule in R has one of the following three forms:

1. $A \rightarrow BC$, where A , B , and C are elements of V , $B \neq S$, and $C \neq S$.
2. $A \rightarrow a$, where A is an element of V and a is an element of Σ .
3. $S \rightarrow \epsilon$, where S is the start variable.

Transforming CFG to CNF

$$S \rightarrow SS \mid 1 \mid \epsilon$$

When we revise the above grammar with Chomsky Normal Form, it will turn into the following grammar.

$$S \rightarrow AA \mid 1 \mid \epsilon$$

$$A \rightarrow AA \mid 1$$

Transforming CFG to CNF

Here we will learn a five-step transformation method.

1. Eliminate the start variable on the right.
2. Eliminate all ϵ -rules.
3. Eliminate all unit-rules.
4. Eliminate all rules having more than two symbols.
5. Eliminate all rules, whose right-hand side contains exactly two symbols, which are not both variables.

An Example on CFG2CNF

Consider the context-free grammar $G = (V, \Sigma, R, A)$, where $V = \{A, B\}$, $\Sigma = \{0, 1\}$, A is the start variable, and R consists of the rules

$$A \rightarrow BAB \mid B \mid \epsilon$$

$$B \rightarrow 00 \mid \epsilon$$

An Example on CFG2CNF

$A \rightarrow BAB \mid B \mid \epsilon$
$B \rightarrow 00 \mid \epsilon$

1. Eliminate the start variable on the right.

$S \rightarrow A$

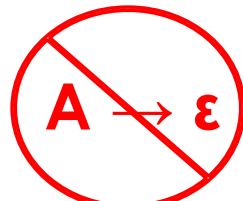
$A \rightarrow BAB \mid B \mid \epsilon$

$B \rightarrow 00 \mid \epsilon$

An Example on CFG2CNF

$A \rightarrow BAB \mid B \mid \epsilon$
$B \rightarrow 00 \mid \epsilon$

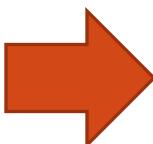
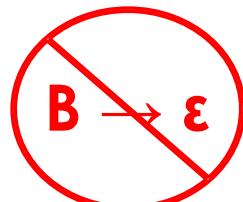
2. Eliminate all ϵ -rules.

$$S \rightarrow A$$
$$A \rightarrow BAB \mid B \mid \epsilon$$
$$B \rightarrow 00 \mid \epsilon$$

$$S \rightarrow A \mid \epsilon$$
$$A \rightarrow BAB \mid B \mid BB$$
$$B \rightarrow 00 \mid \epsilon$$
$$S \rightarrow \epsilon$$
$$A \rightarrow BB$$

An Example on CFG2CNF

$A \rightarrow BAB \mid B \mid \epsilon$
$B \rightarrow 00 \mid \epsilon$

2. Eliminate all ϵ -rules.

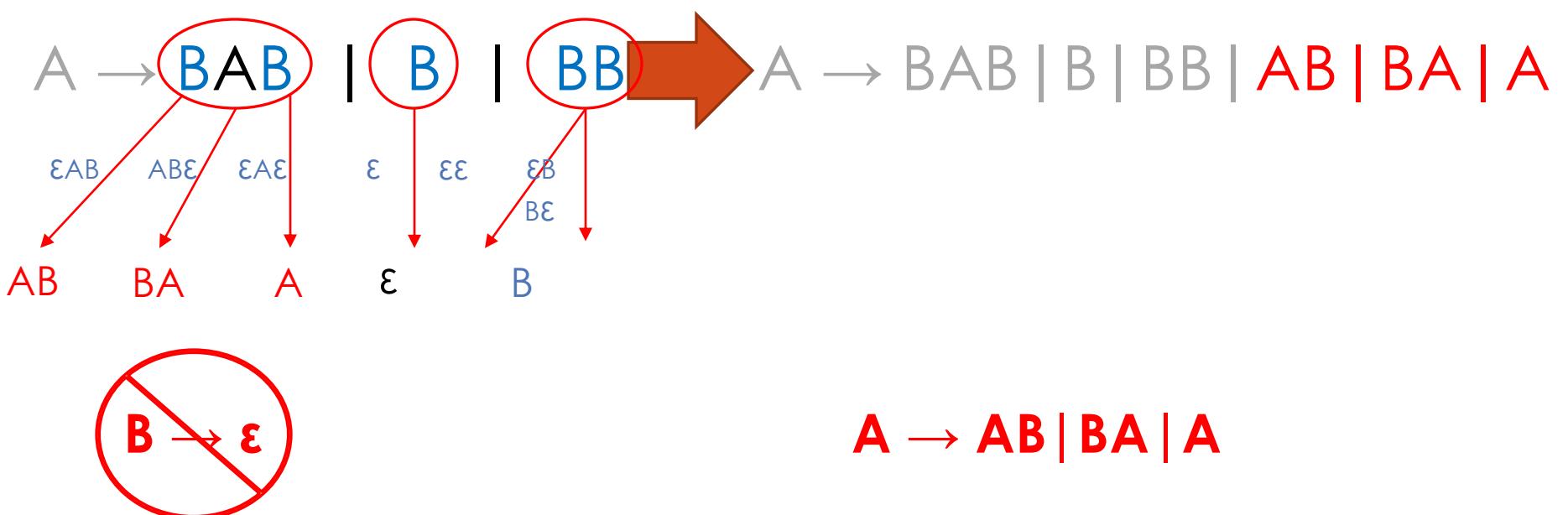
$$\begin{aligned} S &\rightarrow A \mid \epsilon \\ A &\rightarrow BAB \mid B \mid BB \\ B &\rightarrow 00 \mid \epsilon \end{aligned}$$

$$\begin{aligned} S &\rightarrow A \mid \epsilon \\ A &\rightarrow BAB \mid B \mid BB \mid AB \mid BA \mid A \\ B &\rightarrow 00 \end{aligned}$$


$A \rightarrow AB \mid BA \mid A$

An Example on CFG2CNF

```
A → BAB | B | ε  
B → 00 | ε
```

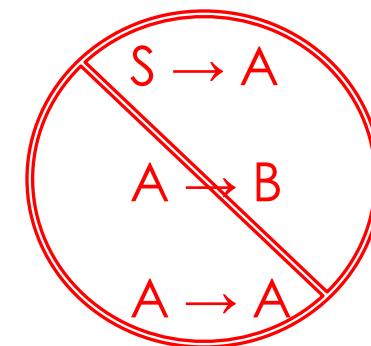
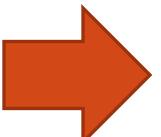
2. Eliminate all ϵ -rules.



An Example on CFG2CNF

$A \rightarrow BAB \mid B \mid \epsilon$
$B \rightarrow 00 \mid \epsilon$

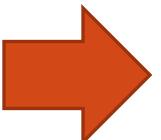
3. Eliminate all unit-rules.

$$S \rightarrow A \mid \epsilon$$
$$A \rightarrow BAB \mid B \mid BB \mid AB \mid BA \mid A$$
$$B \rightarrow 00$$

$$S \rightarrow \epsilon \mid BAB \mid BB \mid AB \mid BA \mid 00$$
$$A \rightarrow BAB \mid BB \mid AB \mid BA \mid 00$$
$$B \rightarrow 00$$


An Example on CFG2CNF

$A \rightarrow BAB \mid B \mid \epsilon$
$B \rightarrow 00 \mid \epsilon$

4. Eliminate all rules having more than two symbols.

$$S \rightarrow \epsilon \mid BAB \mid BB \mid AB \mid BA \mid 00$$
$$A \rightarrow BAB \mid BB \mid AB \mid BA \mid 00$$
$$B \rightarrow 00$$

$$S \rightarrow \epsilon \mid BC \mid BB \mid AB \mid BA \mid 00$$
$$A \rightarrow BC \mid BB \mid AB \mid BA \mid 00$$
$$B \rightarrow 00$$
$$C \rightarrow AB$$

An Example on CFG2CNF

$A \rightarrow BAB \mid B \mid \epsilon$
$B \rightarrow 00 \mid \epsilon$

5. Eliminate all rules, whose right-hand side contains exactly two symbols, which are not both variables.

$S \rightarrow \epsilon \mid BC \mid BB \mid AB \mid BA \mid 00$

$A \rightarrow BC \mid BB \mid AB \mid BA \mid 00$

$B \rightarrow 00$

$C \rightarrow AB$

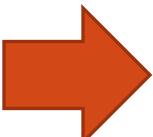
$S \rightarrow \epsilon \mid BC \mid BB \mid AB \mid BA \mid DD$

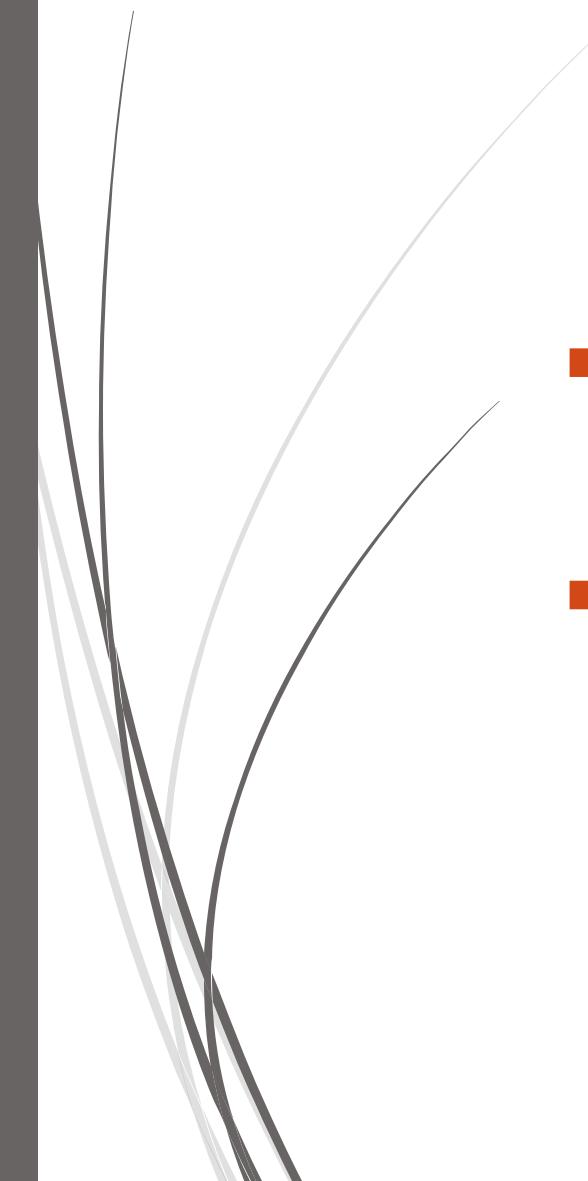
$A \rightarrow BC \mid BB \mid AB \mid BA \mid DD$

$B \rightarrow DD$

$C \rightarrow AB$

$D \rightarrow 0$



-
- 
- ➡ That's all.
 - ➡ Thanks for listening.