alalblalblb]a]b]a]b]O] tape

2 B S B

Theory of Computation

Lesson 9

Push-Down Automata

\

Push Down Automarta

alplalblblalblalp|O| tape

[

state control

stack

2 NN BN ov] 6

Push Down Automarta

blblalb

state control

2 NN BN ov] 6

1. There is a tape which is
divided into cells. Each cell
stores a symbol belonging
to a finite set ¥, called the
tape alphabet. Thereis a
special symbol # that is not
contained in %; this symbol
Is called the blank symbol.
If a cell contains #, then
this means that the cell is
stack gctually empty.

alofalb]b]alb

b

L]

CEP

state control

tape

2 NN BN ov] 6

stack

Push Down Automarta

2. There is a tape head
which can move along
the tape, one cell to the
rnght per move.

This fape head also read
the cell it currently scans.

Push Down Automarta

alplalplplalp[alp[O] tape 3. There Is a stack. So we
[can store something now.

But we can use only
symbols defined in T,
state control called the stack alphabet.

This set contains a specidal
symbol $.

stack

2 NN BN ov] 6

Push Down Automarta

alplalplplalp[alp[O] tape 4. There I1s a stack head
which can read the top
L symbol of the stack.

This head can also pop the
state control top symbol, and it can
push symbols of [onto the

< > stack.

stack

2 NN BN ov] 6

Push Down Automarta

albla|b]|b
L
_—

blalb|U
~_§\\\\<<

< state control

—

S

tape

2 NN BN ov] 6

stack

5. There is a state control,
which can be in any one
of a finite number of
states.

The set of states Is denoted
by Q. The set Q contains
one special state g, called
the start state.

Formal Definition

A deterministic PDA is a 5-tuple M= (%, I, Q, 6,), where

®) s a finite set, called the tape alphabet; the blank
symbol # Is not contained in ,

[is a finite set, called the stack alphabet; this
alphabet contains the special symbol $,

» Q) is a finite set, whose elements are called states,
® g is an element of Q; it is called the start state,
» 5 s called the transition function, which is a function

\ Q x (LU {#}) xT — Q x {N, R} x I*

A Sample Delta Rule

qa$ — gRPS

states

When we focus on the
states here, we will see that
the state has not changed.
Thus, we canread it as

'stay in the same state'.

A Sample Delta Rule

ch$ — gR$S When the tape head reads

an ‘a’ symbol from the

tape, the tape head must

go one cell fo the right.
tape

A Sample Delta Rule

qad — qR§§ When stack head pop the

dollar symbol from the

stack, the stack head must

push $S symbols into the

stack .
stfack in order.

A Sample Delta Rule

a

qa$ — gR$S L

9

state control

A Sample Delta Rule

a

qa$ — gR$S R

q stay the g state
state control

push $S

w

Execution of PDA

alalolalolnlalolals O Jser can enter a string into
the tape, but cannoft see
‘ the stack. Only state

conftroller can use the
stack.

state control

When the program is
started, we will assume
that the tape head is on
the first letter of the string
\ written by the user.

Execution of PDA

adalslalololaln el IO State controller starts on
the start state g and the

‘ stack has only one dollar
symlbol.

state control A command is selected
according to the symbol

to be read from the tape,
and the operation on the
rght hand side s

\ performed.

Execution of PDA
When the stack gefts

b O empty, PDA terminates.

L When PDA terminates, if
the tape head is on the
cellimmediately to the
g#9P — gNe¢ right cell of the last symbol
of the string, this is good
NEWS.

Because the string on the
\ tape is accepted.

A first example: Properly nested parentheses

Algorithm: remember the number of (3*(x"?+1))-(y+1)*(x+5)

‘a’s, then match them with ‘b’s.

(CC)))(C)()
aaabbb ab ab

Use the stack to remember the a’s.

or each ‘a’ reading, push a symbol
(let's say S) into the stack. Delete
one from the stack each time ‘b’ is

read.

qa$ — g
qp$ — g
#$ — @

qas — g

R$S
N €

N €

RSS
RE

NS

remember
reject

accept

remember

forget

Lalb]a]b]O]

L

state co

ntr

ol

reject with loop-forever

A first example: Properly nested parentheses

A first example: Properly nested parentheses

albla]|b |l

/C]CI$ — J Q$S\ remember
C{b$ — QNE |reject
#$ — aNeg) accept

When do you think the top

part will work?

C](]S — C]QSS remember
qgbS — gRe forget

C]#S — NS reject with loop-forever

A first example: Properly nested parentheses
Lol

alblalp|U
/-)
qa$ — gR3$S | remember 1. At the start of PDA
C{b$ — gNE | reject

#$ — gNE) accept

2. When |a|=|b]

C](]S — CIQSS remember
gbS — gRe forget

C{#S — NS reject without termination

A first example: Properly nested parentheses

albla]|b |l
C]CI$ — ?$S remember
C]b$ — gNE reject
#$ — ONE accept
[C{CIS — QSS\ remember :
SO when does this part worke

agbsS — gRe forget

\q #S — g NS) reject without termination

J

A first example: Properly nested parentheses

albla]|b |l
C]CI$ — ?$S remember T T
ab$ — gNe reject
#$ — gNE accept
/C{OS — C]?SS\ remember f la|>|b]|
agbsS — gRe forget
_A#S = NS) refect without termination

Jol1$ — AoN$
Qo#$ — qpNe
Q0SS — gpRSS
715 — q;Re
QoHS — gpNS
d,0% — ;NS
a4 1$ — NS
a,#$ — q;Ne
d,0S — g;NS
a,1S — g;Re
q,#S — g;NS

A second example: 0"1"
do0% — qgR$S

remember

reject without termination
accept

remember

forget

reject without termination
reject without termination
reject without termination
accept

reject without termination
forget

reject without termination

0313 :000111

START

™\

A third example: Find b in the middle [« afbJald

qa$ — gR$S remember _ .

DI aRs oo et e e

ab$ — gR$S remember

g#$ — gN$ reject without termination

gaS — gRSS remember g g gg o s
S— g'RS middle b b 757 a S'e

gbS — gRSS remember a,Z: Sz €. 2 €

g#S — gNS reject without termination b S°S A

g'a$ — g'Ne reject q0 b.Z.Z o

a'b$ — g'Ne reject

g#$ — q'Ne accept

g'aS — gRe forget

g'bS — g'Re forget

g'#S — g'NS reject without termination

Equivalence of PDA and CFG

Theorem: Let X be an alphabet and A € 21* be a
language. Then Ais CFG if and only if there exists a
nondeterministic PDA that accepts A.

.Each A — BC rule fransforms qaA — qNCB, foralla e X

2.Each A — arule fransforms qaA — qRe

3.Each § — e rule transforms g#S — gNg

» That's all.

» Thanks for listening.

	Slide 1: Theory of Computation Lesson 9
	Slide 2: Push Down Automata
	Slide 3: Push Down Automata
	Slide 4: Push Down Automata
	Slide 5: Push Down Automata
	Slide 6: Push Down Automata
	Slide 7: Push Down Automata
	Slide 8: Formal Definition
	Slide 9: A Sample Delta Rule
	Slide 10: A Sample Delta Rule
	Slide 11: A Sample Delta Rule
	Slide 12: A Sample Delta Rule
	Slide 13: A Sample Delta Rule
	Slide 14: Execution of PDA
	Slide 15: Execution of PDA
	Slide 16: Execution of PDA
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

