NLP Proje Gorevi: Sektorel ReAct Ajani Tasarimi

Bu projede, statik cevaplar veren bir Dil Modelini (LLM), disunen, karar veren ve dis
kaynaklari kullanarak problem c¢6zen bir Otonom Ajan'a (ReAct Agent)

donustureceksiniz.
© Projenin Amaci

Size verilen temel kod iskeletini kullanarak; belirlediginiz 6zel bir ticari alan icin (Orn: E-
Ticaret, Hukuk, Saglik, Lojistik vb.) ozellesmis bir yapay zeka asistani gelistirmektir.
Ajaniniz, o sektdre ait teknik dokimanlari veya verileri kullanarak kullanicinin sorularini
"muhakeme ederek" (reasoning) cevaplamaldir.

& Kaynaklar
¢ Temel Kod (Notebook): Google Colab Linki

https://colab.research.google.com/drive/1P_6jWDjVKEgOgPZXxUCXleyg5ERIt4Pl
?usp=sharing

e Teorik Kilavuz: ReAct - Reasoning and Action.pdf (Ekte paylasilmistir)

Adim Adim Yapilacaklar
1. Adim: Sektér ve is Modeli Segimi

Her 68renci farkli bir alan segmelidir. Sectiginiz alanin "teknik bilgi" gerektiren bir yonu

olmalidir.

o Ornekler: Sigorta Policesi Asistani, Kripto Para Analisti, ilagc Prospektiis Uzmani,

imar Yonetmeligi Danismani vb.
2. Adim: Veri Toplama ve Bilgi Tabani Olusturma (Knowledge Base)

Sectiginiz sektore ait, halka acik (public) verileri toplayin. Bu veriyi modelinize 68retmek
icin iki yoldan birini secebilirsiniz:

e Yol A (RAG - Onerilen): Verilerinizi "chunk"lara béliin, embeddinglerini ¢ikarin ve
bir Vektor Veritabanina (Chroma/Pinecone vb.) kaydedin.

¢ Yol B (LoRa): Verilerinizle bir Base Modeli (6rn: Qwen, Llama, Mistral vs.) fine-tune
ederek sektorel bilgiye sahip bir LoRa adaptorl egitin.

3. Adim: ReAct Mimarisine Gegis (En Kritik Adim)
Size verilen Colab kodunu kullanarak su entegrasyonu yapmalisiniz:

1. RAG/LoRa'yi "Tool" Olarak Tanimlayin:

https://colab.research.google.com/drive/1P_6jWDjVKEgOgPZXxUCXIeyg5ERIt4Pl?usp=sharing
https://colab.research.google.com/drive/1P_6jWDjVKEgOgPZXxUCXIeyg5ERIt4Pl?usp=sharing

o Klasik RAG sistemleri soruyu alir ve cevabi verir. ReAct mimarisinde ise
sisteminiz cevabi degil, ham bilgiyi (context) donduren bir fonksiyon (Tool)
olmaldir.

o Fonksiyonunuz, Ajanin (LLM) ihtiya¢ duydugunda ¢agirabilecegi bir arag
olmalidir (Orn: insurance_policy_search_tool).

2. System Prompt Tasarimi:

o Ajaninizin beynini tasarlayin. Ona hangi araglara sahip oldugunu ve nasil
dusinmesi gerektigini (Thought -> Action -> Observation) anlatan bir
promptyazin.

4. Adim: Senaryo Testleri
Ajaninizi asagidaki iki senaryo turliinde test edin ve loglarini kaydedin:
e Senaryo A (Tek Atimlk Sorgu): Dogrudan dokiimandan bulunacak cevaplar.
o Orn: "X sigortasinin iptal siiresi kag glindiir?"

¢ Senaryo B (Cok Adimli / Multi-Hop Sorgu): Ajanin 6nce dokiimandan bilgi cekip,
sonra bu bilgiyle mantiksal ¢cikarim yapmasini gerektiren sorular.

o Orn: "Gegen yilin cirosunu rapordan bul ve bugiinki dolar kuruyla TL'ye
cevir" (Burada hem rapor okuma hem hesaplama/kur bilgisi gerekir).

¥ Teslim Edilecekler

1. Github Reposu:
o Calisan .ipynb (Colab) dosyasi veya Python scriptleri.
o Kullanilan requirements.txt.
o Segilen veri setinden drnekler.

2. Proje Raporu (PDF):
o Segilen sektdr ve nedeni.
o Kullanilan Yontem (RAG mi LoRa mi?) ve mimari semasi.

o Trace Ciktilari: Ajanin "Dusinme" adimlarint (Thought, Action,
Observation) gosteren 6rnek loglar.

o Karsilasilan zorluklar (Orn: Sonsuz déngiiye girme, haliisinasyon vb.) ve
¢ozumleriniz.

. Ipuglari ve Uyarilar (Dékiimandan Notlar)

¢ Sonsuz Dongl (Infinite Loop): Ajan bazen cevabi bulamazsa surekli ayni aramayi
yapabilir. Déngii limiti (max_turns) koymayi unutmayin (Orn: En fazla 5 adim).

¢ Haliisinasyon: Ajan elinde olmayan bir araci (6rn: email_sender) uydurup
cagirmaya calisabilir. System Prompt'ta aracglarinizi cok net tanimlayin.

o Dil Sorunu: Eger veriniz ingilizce, sorular Tiirkce ise Ajan kafasi karisabilir. Prompt
icinde "Her zaman Turkce dusun" komutu vererek bunu ¢ozebilirsiniz.

EK: ReAct (Reasoning + Acting) Mimarisi ve RAG Entegrasyon Rehberi

1. Giris ve Temel Kavramlar
1.1 ReAct Nedir?
ReAct (Reasoning + Acting), Buyuk Dil Modellerinin (LLM) sadece metin Ureten statik
yapilar olmaktan ¢ikip, problem ¢6zen otonom ajanlara dontismesini saglayan bir prompt
muhendisligi ve mimari paradigmadir.
Yao et al. (2022) tarafindan ortaya konan bu yaklasim, modelin bir gérevi yerine getirirken
iki temel yetenegi birlestirmesine dayanir:
1. Reasoning (Muhakeme): Modelin ne yapacagini planlamasi, durumu
analiz etmesi ve strateji belirlemesi (Dustnce Zinciri - Chain of Thought).
2. Acting (Eylem): Modelin dis dlinya ile etkilesime gecmek icin belirli araclari
(Tools) cagirmasi (APl sorgusu, veritabani aramasi, matematiksel islem vb.).

1.2 ReAct Dongilsi
ReAct ajani lineer (dogrusal) calismaz; dongusel bir slreg izler:

. Thought (Dusiince): "Kullanici X'i sordu. Bunu cevaplamak igin Y bilgisine
ihtiyacim var."

. Action (Eylem): "Veritabaninda Y'yi ara."

. Observation (Gozlem): "Veritabanindan gelen sonug: Z."

. Thought (Tekrar Diisiince): "Z bilgisini aldim, simdi bunu kullanicinin

sorusuna uyarlayabilirim."
. Final Answer (Nihai Cevap): "Cevap Z'dir."

2. Klasik RAG vs. ReAct Agent Mimarisi

Mevcut sistemlerinizle kiyaslandiginda ReAct'in farkini anlamak, dogru mimariyi kurmak
icin kritiktir.

2.1 Klasik RAG (Retrieval-Augmented Generation)

Klasik RAG akisi "Tek Atimluk" (One-Shot) bir surectir ve deterministiktir.

* Akis: Sorgu -> Embedding -> Retrieval -> Context Birlestirme -> LLM Cevap Uretimi.
* Eksiklik: Eger cekilen dokiiman soruyu cevaplamaya yetmezse, sistem tikanir veya
halUsinasyon gorur. Modelin "Bu bilgi yetersiz, baska bir yere bakmaliyim" deme
sansi yoktur.
* Rol: LLM burada sadece bir "Okuyucu/Ozetleyici"dir.
2.2 ReAct Agentic RAG
ReAct yapisinda RAG, sistemin tamami degil, sadece bir aracidir (Tool).
* Akis: Sorgu -> Ajan (Reasoning) -> Karar -> RAG Tool (Retrieval) -> Ajan
(Observation) -> Ajan (Cevap).
* Avantaj: Ajan, RAG'dan gelen bilgiyi analiz eder. Eger bilgi eksikse aramayi tekrarlar
(Self-Correction) veya farkli bir arag¢ kullanir (Tool Switching).
* Rol: LLM burada bir "Orkestrator/Karar Verici"dir.

3. Mimari Konumlandirma ve Entegrasyon
Mevcut RAG pipeline'inizi ReAct mimarisine entegre ederken bilesenlerin rolleri yeniden
dagititmalidir.
3.1 Katmanl Mimari
1. Orkestrasyon Katmani (The Brain):
a. ReAct Agent burada calisir.
b. System Prompt burada tanimlanir.
c. Hafiza (Conversation History) burada tutulur.
2. Arac Katmani (The Limbs):
a. RAG Tool: Vektor veritabanina erisim saglar.
b. Math Tool: Hesaplamalar yapar.
c. APl Tool: Dis veri (Hava durumu, borsa vb.) ceker.
3. Veri Katmani (The Knowledge):
a. Vector DB (Chroma, Pinecone vb.)
b. Dékumanlar (PDF, TXT)

3.2 RAG Bilesenlerinin Doniisimu
Mevcut RAG yapinizdaki bilesenlerin ReAct'a adaptasyonu:

. ReAct
. Klasik RAG| _ .. . o
Bilesen . Mimarisi Yapilmasi Gereken Degisiklik
Roli Rolii

Chunking &/ Veri

Embedding | Hazirlig Veri Hazirligl | Degisiklik Yok. Ayni altyapi korunur.

Vector Ana Bilgi| Ana Bilgi

Degisiklik Yok.
Database Kaynagi Kaynagi eslglidik Yo

Dokuman Dokuman

Retriever Getirici Getirici Bir Python fonksiyonuna (Tool) sarilir.

LLM Cevap RAG fonksiyonu LLM cevabi degil, ham

. Kaldiril
(Generation) | Uretici atdinhr metin (Raw Context) dondurmelidir.
System| Prompt artik cevabi degil, "Ne zaman
Cevaplayici | Yonlendirici L o . i
Prompt RAG'a gidilecegini" tarif eder.

4. Uygulama Adimlari: Minimum Refactor ile Gegis
Ogrencilerin projelerini bozmadan ReAct'a gecis yapmalari icin izlemeleri gereken teknik
yol haritasi:
Adim 1: RAG Pipeline'ini "Sessizlestirmek"
Mevcut RAG kodunuz muhtemelen retrieve edip ardindan generate etmektedir.
generate kismini (yani LLM'e giden son adimi) kesin.
* Eski Cikti: "Sirket politikasina gore izinler 14 gundur." (LLM CUmlesi)
* Yeni Gikti: "Dokiiman ID: 102 - igerik: ...izinler ilk yil 14 giindir..." (Ham String)
Adim 2: RAG Tool Wrapper Yazimi
Retriever fonksiyonunu, Ajanin kullanabilecegi bir formata sokun.
¢ Pseudo-Code (Kavramsal Kod):
Python def rag_knowledge_base_tool(sorgu):
Sirket ici dokiimanlarda, kurallarda ve raporlarda arama yapar.
Genel sohbeticin kullanma.
""" belgeler = vector_db.similarity_search(sorgu) return birlestir(belgeler) # Sadece
metin dondar

Adim 3: ReAct Prompt Tasarimi

Ajanin beynini (System Prompt) yapilandirin.

* Prompt Sablonu:

Sen bir ReAct ajanisin. Asagidaki araglara erisimin var:

1. rag_knowledge_base_tool: Sadece dokiimanlardan bilgi gerektiren sorularda kullan.
Dusun (Thought) -> Aksiyon (Action) -> Gozlem (Observation) déngusunu takip et.

Asla kendi bilgine glivenme, mutlaka RAG aracini kontrol et.

5. Ornek Akis Senaryolari (Trace)

ReAct + RAG entegrasyonunun gucunu gosteren iki farkli senaryo. Senaryo A: Dogrudan
RAG Sorgusu

Kullanici: "Staj defterini ne zaman teslim etmeliyim?"

1. Agent (Thought): Kullanici staj prosedurunu soruyor. Bu bilgi sirket
dékimanlarinda olmali. rag_knowledge_base_tool kullanmaliyim.

2. Agent (Action): rag_knowledge_base_tool("staj defteri teslim tarihi")

3. System (Execution): Vektor DB taranir, ilgili paragraf bulunur.

4, Agent (Observation): "Yonetmelik Madde 5: Staj defterleri, donemin son

glununden itibaren 7 is gunu icinde teslim edilir."

5. Agent (Thought): Bilgiyi buldum. Simdi kullaniciya cevap verebilirim.
6. Agent (Final Answer): "Staj defterinizi donem bitiminden sonraki 7 is gun
icinde teslim etmelisiniz."
Senaryo B: Multi-Hop (Cok Adimli) Sorgu
Kullanici: "Gegen yilin faaliyet raporundaki net kdrim ile buginkl Apple hisse fiyatini
karsilastir."
1. Agent (Thought): iki bilgiye ihtiyacim var. 1) Rapordaki net kar (RAG), 2)
Giincel Apple hissesi (Dis API). Once raporu bulayim.
2. Agent (Action): rag_knowledge_base_tool("2023 faaliyet raporu net kar")
3. Agent (Observation): "..2023 yili net kari 150 Milyon USD olarak
gerceklesmistir..."
4. Agent (Thought): Kan o6grendim (150M). Simdi Apple hissesini
O0grenmeliyim.
5. Agent (Action): finance_tool("AAPL price")
6. Agent (Observation): "220 USD"
7. Agent (Thought): Simdi karsilastirma yapabilirim (Bu 6rnekte elmalarla
armutlar olsa da, ajan isteneni yapar).
8. Agent (Final Answer): "2023 net kariniz 150 Milyon USD iken, Apple hissesi
su an 220 USD'dir."

6. Sik Karsilasilan Hatalar ve Oneriler

1. Sonsuz Dongi (Infinite Loop): Ajan RAG'dan doénen cevabi begenmezse
surekli ayni aramayi yapabilir.

a. Co6ztim: DOngu limitini (max_turns) 3-5 arasinda tutun.
2. Tool Hallusinasyonu: Ajan var olmayan bir araci (6rn: email_sender)

cagirmaya calisabilir.
a. Coézum: System Prompticinde arac listesini cok net belirtin.

3. Dil Karmasasi: RAG'dan Turkgce veri gelip, Ajan ingilizce diistinebilir.
a. Coézum: System Prompt'ta "Her zaman Turkce duslun ve cevap ver"
talimati verin veya RAG verisini 6zetleterek alin.

