
Retrieval-Augmented Generation (RAG)
Systems

Understanding Modern Information Retrieval and Generation

RAG Academic Assistant Team

2024

Retrieval-Augmented Generation (RAG) Systems
Understanding Modern Information Retrieval and Genera-
tion

Table of Contents
1. What is RAG and Why Do We Need It?
2. Understanding Chunking: The Foundation of RAG
3. The Retrieval Process: From Query to Results
4. Vector Databases and ChromaDB
5. Hybrid Search: Combining Semantic and Keyword Search
6. Language Model Generation and Parameters
7. Real-World Applications and Examples
8. System Architecture Overview
9. Practical Implementation Considerations
10. Future of RAG Systems

1



1. WHAT IS RAG AND WHY DO WE NEED IT?

1. What is RAG and Why Do We Need It?
Project Implementation
This presentation is based on our RAG Academic Assistant project, which
demonstrates these concepts in practice. You can explore the complete
implementation at:
GitHub Repository: github.com/naholav/rag-academic-assistant
The project includes: - Full RAG pipeline implementation with ChromaDB - Sup-
port for multiple PDF documents - Dual-mode chat interface (RAG and Direct) -
Turkish and English language support - Streamlit-based user interface

The Problem with Traditional Language Models
Large Language Models (LLMs) like GPT, Claude, and Llama have revolutionized
natural language processing, but they face critical limitations:

Knowledge Limitations

• Static Knowledge: Models only know what they learned during training
• No Real-Time Updates: Cannot access information after their training
cutoff date

• Hallucination: May generate plausible-sounding but incorrect informa-
tion

• No Source Attribution: Cannot cite where information comes from

The Solution: RAG

Retrieval-Augmented Generation (RAG) combines the power of: 1. In-
formation Retrieval: Finding relevant information from a knowledge base 2.
Language Generation: Using LLMs to create natural, coherent responses
Think of RAG as giving an AI assistant access to a library. Instead of relying only
on memorized information, it can look up specific books and pages to answer
your questions accurately.

How RAG Transforms AI Applications
Without RAG (Traditional LLM)

User: "What's our company's vacation policy?"
LLM: "I don't have access to your company's specific policies."

2

https://github.com/naholav/rag-academic-assistant


How RAG Transforms AI Applications1. WHAT IS RAG AND WHY DO WE NEED IT?

With RAG

User: "What's our company's vacation policy?"
RAG System: "According to the Employee Handbook (Page 23),
employees receive 15 vacation days in their first year,
increasing to 20 days after three years of service."

3



2. UNDERSTANDING CHUNKING - THE FOUNDATION OF RAG

2. Understanding Chunking - The Foundation of
RAG
What is a Chunk?
A chunk is a small, manageable piece of text extracted from a larger document.
Think of it like breaking a book into paragraphs or pages that can be individually
searched and retrieved.

Why Do We Need Chunking?

1. Context Window Limitations: LLMs can only process a limited amount
of text at once

2. Efficiency: Processing entire documents for every query would be slow
and expensive

3. Relevance: We only need the specific parts that answer the user’s ques-
tion

4. Cost: Processing less text means lower computational costs

Chunk Size: Finding the Sweet Spot
What is Chunk Size?

Chunk size is the number of tokens (words/subwords) in each text segment.
Common sizes range from 200 to 1500 tokens.

Optimal Chunk Sizes and Trade-offs

Table 1: Chunk Size Comparison
Chunk
Size

Tokens Use Case Advantages Disadvantages

Small 200-400 Precise facts,
definitions

High precision,
specific answers

May lose context

Medium 500-800 General use,
balanced

Good context,
manageable

Balanced trade-
offs

Large 1000-
1500

Complex top-
ics

Full context, com-
plete ideas

Less precise,
higher costs

Our Choice: 800 Tokens

We use 800 tokens because: - Complete Ideas: Enough space for 2-3 full
paragraphs - Sufficient Context: Captures relationships between concepts -

4



Chunk Overlap: Maintaining Context2. UNDERSTANDING CHUNKING - THE FOUNDATION OF RAG

Efficient Processing: Reasonable computational load - Good Retrieval: Not
too broad to dilute relevance

Chunk Overlap: Maintaining Context
What is Chunk Overlap?

Chunk overlap is the number of tokens shared between consecutive chunks.
It ensures important information at chunk boundaries isn’t lost.

Visual Example of Overlapping

Document: "The sky was blue. Birds were singing. It was a perfect day.
Children played in the park. Their laughter filled the air."

Without Overlap:
Chunk 1: "The sky was blue. Birds were singing."
Chunk 2: "It was a perfect day. Children played in the park."
Problem: Lost connection between weather and children playing

With 150 Token Overlap:
Chunk 1: "The sky was blue. Birds were singing. It was a perfect day."
Chunk 2: "It was a perfect day. Children played in the park. Their laughter..."
Benefit: Maintains context between chunks

Why 150 Token Overlap?

• Context Preservation: ~20% overlap maintains narrative flow
• Boundary Information: Captures complete sentences at edges
• Retrieval Improvement: Related information appears in multiple
chunks

• Storage Balance: Reasonable increase in storage (not doubling data)

5



3. THE RETRIEVAL PROCESS

3. The Retrieval Process
Candidates to Retrieve vs. Final Chunks Used
Stage 1: Candidates to Retrieve (Casting a Wide Net)

Candidates to retrieve refers to the initial number of potentially relevant
chunks the system fetches from the database.
• Typical Range: 10-100 chunks
• Our Setting: 20 candidates
• Purpose: Ensure we don’t miss relevant information

Stage 2: Final Chunks Used (Precision Selection)

Final chunks used are the top-ranked chunks actually sent to the LLM for
answer generation.
• Typical Range: 3-10 chunks
• Our Setting: 5 chunks
• Purpose: Provide focused, relevant context without overwhelming the
model

The Filtering Process

User Query: "What are the performance metrics?"
↓

Step 1: Retrieve 20 candidate chunks (broad search)
- Chunk A: Performance metrics... (Score: 0.95)
- Chunk B: Benchmark results... (Score: 0.92)
- Chunk C: System performance... (Score: 0.89)
... (17 more chunks with lower scores)

↓
Step 2: Rerank using cross-encoder

↓
Step 3: Select top 5 chunks for generation

↓
Final Context: Only the 5 most relevant chunks

Why This Two-Stage Approach?

1. Recall vs. Precision: First maximize recall (find everything), then maxi-
mize precision (keep only the best)

2. Computational Efficiency: Initial search is fast, detailed reranking only
on subset

6



Candidates to Retrieve vs. Final Chunks Used 3. THE RETRIEVAL PROCESS

3. Quality Assurance: Multiple evaluation stages reduce chance of missing
information

4. Context Optimization: LLM receives focused, high-quality information

7



4. VECTOR DATABASES AND CHROMADB

4. Vector Databases and ChromaDB
What is a Vector Database?
A vector database is a specialized database designed to store and search
numerical representations (embeddings) of text, images, or other data.

Traditional Database vs. Vector Database

Table 2: Database Comparison
Traditional Database Vector Database
Stores exact data (text, num-
bers)

Stores numerical vectors
(embeddings)

Searches by exact match or
keywords

Searches by semantic simi-
larity

”Find documents with ’car’” ”Find documents similar in
meaning to ’automobile’”

Returns exact matches only Returns conceptually related
results

ChromaDB: Our Vector Storage Solution
ChromaDB is an open-source vector database optimized for AI applications.

Key Features of ChromaDB

1. Persistent Storage: Data survives system restarts
2. Metadata Support: Store additional information with vectors
3. Efficient Indexing: Fast similarity search using HNSW algorithm
4. Local or Cloud: Can run on your machine or in the cloud
5. Simple API: Easy integration with Python applications

How ChromaDB Works in RAG

1. Document Processing:
Text: "Machine learning revolutionizes data analysis"
↓

2. Create Embedding:
Vector: [0.23, -0.45, 0.67, 0.12, ...] (768 dimensions)
↓

3. Store in ChromaDB:
ID: chunk_001
Vector: [0.23, -0.45, 0.67, ...]

8



ChromaDB: Our Vector Storage Solution4. VECTOR DATABASES AND CHROMADB

Metadata: {page: 5, source: "AI_Guide.pdf"}
↓

4. Query Time:
User: "How does AI analyze data?"
Query Vector: [0.21, -0.43, 0.65, ...]
↓

5. Similarity Search:
ChromaDB finds vectors closest to query vector
Returns: chunk_001 (similarity: 0.92)

Why Vector Databases Matter

• Semantic Understanding: Find information by meaning, not just key-
words

• Multilingual: Works across languages (similar concepts have similar vec-
tors)

• Scalability: Efficiently search millions of documents
• Flexibility: Works with any type of content that can be embedded

9



5. HYBRID SEARCH - THE BEST OF BOTH WORLDS

5. Hybrid Search - The Best of Both Worlds
Semantic Search Weight (70%)
Semantic search uses embeddings to find content based on meaning and
context.

How Semantic Search Works

Query: "vehicle performance"

Semantic Search Finds:
- "car speed and efficiency" (different words, same meaning)
- "automobile capabilities" (synonyms understood)
- "transportation metrics" (related concepts)

Why 70% Weight?

• Conceptual Understanding: Captures the intent behind queries
• Synonym Recognition: Finds related terms automatically
• Context Awareness: Understands relationships between concepts
• Language Flexibility: Works across different phrasings

BM25 Keyword Weight (30%)
BM25 (Best Matching 25) is a probabilistic ranking function for keyword-
based search.

How BM25 Works

Query: "GPT-4 temperature parameter"

BM25 Finds:
- Documents with exact term "GPT-4"
- Documents with exact phrase "temperature parameter"
- Weights by term frequency and document length

Why 30% Weight?

• Precision for Technical Terms: Exact matches for acronyms, model
names

• Specific Terminology: Medical terms, legal phrases, product names
• Complementary Coverage: Catches what semantic search might miss
• Proven Reliability: Decades of information retrieval research

10



The Power of Combination 5. HYBRID SEARCH - THE BEST OF BOTH WORLDS

The Power of Combination
Example: Hybrid Search in Action

Query: "OCR-Qwen-32B performance benchmarks"

Semantic Search (70%) finds:
- "model evaluation results"
- "accuracy measurements"
- "testing outcomes"

BM25 (30%) finds:
- Exact matches for "OCR-Qwen-32B"
- Exact matches for "benchmarks"

Combined Result: Documents that contain the specific model name
AND discuss performance conceptually

11



6. LANGUAGE MODEL GENERATION AND PARAMETERS

6. Language Model Generation and Parameters
Understanding LLM Parameters
Temperature (0.3)

Temperature controls the randomness/creativity of the model’s output.
Temperature Scale:
0.0 ────────────┬────────────── 1.0
Deterministic 0.3 Creative
(Factual) (Our Setting) (Imaginative)

Why 0.3 for RAG?
• Factual Accuracy: Low temperature ensures consistent, reliable
answers

• Reduced Hallucination: Less likely to generate creative but incorrect
information

• Reproducibility: Similar queries produce similar answers
• Professional Tone: Maintains formal, informative style

Examples at Different Temperatures

Query: "What is machine learning?"

Temperature 0.1 (Very Factual):
"Machine learning is a subset of artificial intelligence that enables
systems to learn from data without explicit programming."

Temperature 0.3 (Balanced):
"Machine learning is a branch of AI where computers learn patterns
from data to make decisions without being explicitly programmed
for each specific task."

Temperature 0.8 (Creative):
"Machine learning is like teaching a computer to think by showing
it examples, similar to how children learn by observing patterns
in the world around them."

Top-p (0.95)

Top-p (nucleus sampling) limits the model to considering only the most prob-
able tokens that sum to probability p.

12



Understanding LLM Parameters6. LANGUAGE MODEL GENERATION AND PARAMETERS

Top-p Visualization:
All possible next words sorted by probability:
[the: 0.3] [a: 0.25] [an: 0.2] [this: 0.15] [that: 0.05] ...

↑_______↑_______↑_______↑
Cumulative: 0.95 (stop here)
Only consider these words

Why 0.95?
• Quality Control: Excludes very unlikely (potentially wrong) options
• Diversity: Still allows variety in word choice
• Natural Language: Produces fluent, human-like text
• Safety: Reduces chance of generating inappropriate content

Max Tokens (2048)

Max tokens sets the maximum length of the generated response.
Token Examples:
"Hello" = 1 token
"Machine learning" = 2 tokens
"The quick brown fox" = 4 tokens
Average: ~1.3 tokens per word

Why 2048 Tokens?
• Comprehensive Answers: ~1500 words, enough for detailed explana-
tions

• Context Preservation: Sufficient space for multi-part answers
• User Experience: Not overwhelming, readable in one sitting
• Cost Efficiency: Balances completeness with computational resources

13



7. REAL-WORLD APPLICATIONS AND EXAMPLES

7. Real-World Applications and Examples
Example 1: Document-Based Question Answering
Soru: “OpenCodeReasoning’de en iyi model hangisi?”

RAG System Process:
1. Query Embedding: Convert Turkish query to vector
2. Retrieval: Find chunks about model performance
3. Context Assembly: Gather information about OCR-Qwen-32B
4. Generation: Produce answer with citations

Cevap: “OPENCODEREASONING’de en iyi model, OCR-Qwen-32B-Instruct
olarak belirlenmiştir. Bu model, LiveCodeBench’te pass@1 oranı 61.7’dir
(ortalama @64), bu değer DeepSeek-R1’in 65.9’una çok yakın olup, diğer açık
kaynak modellerden üstündür. (Kaynak: Sayfa 2, 7)”

Example 2: Out-of-Context Query Handling
Soru: “Selam”

When queries are unrelated to the document content, RAG systems have two
options:
Option 1: Fallback to General LLM
No relevant chunks found → Use LLM's general knowledge

Cevap: “Merhaba! Size nasıl yardımcı olabilirim? Eğer belge içeriği hakkında
sorularınız varsa, detaylı bilgi verebilirim.”
Option 2: Context-Aware Response
System recognizes greeting → Appropriate response without retrieval

This demonstrates RAG’s flexibility in handling both document-specific and gen-
eral queries.

Interactive Parameter Exploration with GitHub Implemen-
tation
To see these concepts in action and experiment with RAG parameters, explore
our implementation:
GitHub Repository: github.com/naholav/rag-academic-assistant
The implementation provides an interactive interface where users can adjust
parameters in real-time to understand how each affects the system:

14

https://github.com/naholav/rag-academic-assistant


Interactive Parameter Exploration with GitHub Implementation7. REAL-WORLD APPLICATIONS AND EXAMPLES

Retrieval Parameters
• Candidates to Retrieve (10-100): Start with more candidates for com-
prehensive coverage
– Set to 10: Fast but might miss relevant info
– Set to 50: Balanced coverage
– Set to 100: Maximum recall, slower processing

• Final Chunks Used (1-20): How many chunks actually go to the LLM
– Set to 1: Very focused, risk of incomplete context
– Set to 5: Our default - balanced context
– Set to 20: Maximum context, but may include noise

Hybrid Retrieval Weights Users can adjust the balance between search
methods: - Semantic Search Weight (0.0-1.0): Understanding meaning
and concepts - 0.0: No semantic search - 0.7: Our default - prioritizes meaning
- 1.0: Only semantic, might miss exact terms
• BM25 Keyword Weight (0.0-1.0): Exact term matching

– 0.0: No keyword search
– 0.3: Our default - catches specific terms
– 1.0: Only keywords, misses synonyms

Generation Settings Fine-tune how the LLM generates responses: - Tem-
perature (0.10-1.00): Controls randomness/creativity - 0.10: Very determin-
istic, same answer every time - 0.30: Our default - factual but natural - 1.00:
Creative, varied responses
• Max Response Tokens (256-4096): Response length limit

– 256: Short, concise answers
– 2048: Our default - comprehensive responses
– 4096: Maximum detail possible

• Top P (0.10-1.00): Nucleus sampling for quality control
– 0.10: Only highest probability tokens
– 0.95: Our default - natural variation
– 1.00: All possibilities considered

Learning by Experimentation

By adjusting these parameters, users can observe: - How semantic vs keyword
weights affect retrieval quality - The impact of temperature on response con-
sistency - Trade-offs between speed and comprehensiveness - How different
settings work better for different query types
This hands-on approach helps users internalize RAG concepts through direct
experimentation rather than theoretical understanding alone.

15



When to Use RAG vs. Pure LLM7. REAL-WORLD APPLICATIONS AND EXAMPLES

When to Use RAG vs. Pure LLM

Table 3: RAG vs Pure LLM Use Cases
Use RAG When: Use Pure LLM When:
Need specific, factual infor-
mation

General conversation

Require source citations Creative writing
Working with proprietary
data

Common knowledge ques-
tions

Information changes fre-
quently

Philosophical discussions

Accuracy is critical Brainstorming ideas

16



8. SYSTEM ARCHITECTURE OVERVIEW

8. System Architecture Overview
Complete RAG Pipeline
Input Processing Layer

RAG systems can handle various input formats, not just PDFs:
• Documents: PDF, Word, PowerPoint, Excel
• Web Content: HTML pages, blog posts, wikis
• Databases: SQL databases, APIs, knowledge graphs
• Multimedia: Transcribed audio, video captions, image descriptions

17



The Universal RAG Workflow 8. SYSTEM ARCHITECTURE OVERVIEW

The Universal RAG Workflow
1. Data Ingestion (Any Source)

├── PDF documents
├── Web scraping
├── Database exports
└── API responses

↓
2. Preprocessing

├── Text extraction
├── Cleaning & formatting
├── Language detection
└── Metadata extraction

↓
3. Chunking Strategy

├── Size: 800 tokens (optimal for most use cases)
├── Overlap: 150 tokens (maintains context)
└── Boundary detection (sentence/paragraph aware)

↓
4. Embedding Generation

├── Model: all-mpnet-base-v2 (768 dimensions)
├── Batch processing for efficiency
└── Cache embeddings for reuse

↓
5. Vector Storage (ChromaDB)

├── Persistent storage
├── Metadata indexing
└── HNSW index for fast search

↓
6. Query Processing

├── User query → embedding
├── Hybrid search (70% semantic + 30% BM25)
├── Retrieve 20 candidates
└── Rerank to top 5

↓
7. Generation (Qwen3-4B)

├── Temperature: 0.3 (factual)
├── Top-p: 0.95 (quality control)
├── Max tokens: 2048 (comprehensive)
└── Streaming for real-time feedback

↓
8. Response Delivery

├── Answer with citations
├── Source attribution
└── Confidence scoring

18



Performance Metrics and Expectations 8. SYSTEM ARCHITECTURE OVERVIEW

Performance Metrics and Expectations
System Performance Benchmarks

Table 4: Performance Metrics
Metric Value Explanation
Initial Setup 30-60

sec
One-time processing of docu-
ments

Query Response 1-3 sec From question to answer
Accuracy 85-95% Depends on document quality
Chunk Retrieval <100ms Vector similarity search
Generation Time 1-2 sec LLM response generation

Quality Indicators

1. Retrieval Quality: Measured by relevance of retrieved chunks
2. Answer Accuracy: Factual correctness compared to source
3. Citation Precision: Correct attribution to source documents
4. Response Coherence: Natural, well-structured answers

19



9. PRACTICAL IMPLEMENTATION CONSIDERATIONS

9. Practical Implementation Considerations
Choosing the Right Parameters
Document Type Considerations

Table 5: Parameter Selection by Document Type
Document
Type

Chunk
Size

Overlap Retrieval
Count

Technical Man-
uals

1000-1200 200 15-20

Research Pa-
pers

800-1000 150 10-15

Legal Docu-
ments

600-800 150 20-25

General Con-
tent

500-800 100 10-15

Language Model Selection

Table 6: Model Size Comparison
Model Size Use Case Advantages Trade-offs
4B Parame-
ters

General use Speed, effi-
ciency

Less nuanced

7B Parame-
ters

Balanced Good quality Moderate re-
sources

13B+ Parame-
ters

Complex Highest quality Slower, ex-
pensive

Common Challenges and Solutions
Challenge 1: Information Not in Documents

Scenario: User asks about something not in the knowledge base
Solution: Implement fallback mechanisms: - Clearly state when information
isn’t available - Offer to search related topics - Provide general knowledge if
appropriate

Challenge 2: Conflicting Information

Scenario: Different documents contain contradictory information

20



Common Challenges and Solutions9. PRACTICAL IMPLEMENTATION CONSIDERATIONS

Solution: - Show both perspectives with sources - Highlight the discrepancy -
Let user evaluate based on source credibility

Challenge 3: Language Mixing

Scenario: Documents in English, queries in Turkish
Solution: - Use multilingual embeddings - Implement translation layer - Main-
tain language consistency in responses

21



10. FUTURE OF RAG SYSTEMS

10. Future of RAG Systems
Emerging Trends
1. Multimodal RAG

• Combining text, images, tables, and graphs
• Understanding relationships across media types
• Generating rich, multimedia responses

2. Adaptive Chunking

• Dynamic chunk sizes based on content type
• Intelligent boundary detection
• Context-aware segmentation

3. Personalized Retrieval

• Learning user preferences over time
• Adjusting weights based on query patterns
• Custom ranking algorithms

4. Real-Time Knowledge Updates

• Continuous document ingestion
• Incremental index updates
• Version control for information

Key Takeaways
1. RAG bridges the gap between static LLM knowledge and dynamic infor-
mation needs

2. Chunking is crucial: 800 tokens with 150 overlap provides optimal bal-
ance

3. Hybrid search (70% semantic + 30% keyword) outperforms single ap-
proaches

4. ChromaDB enables efficient vector storage and retrieval
5. Parameter tuning (temperature=0.3, top-p=0.95, max_tokens=2048)
ensures quality outputs

6. Two-stage retrieval (20 candidates → 5 final) balances comprehensive-
ness and precision

22



Key Takeaways 10. FUTURE OF RAG SYSTEMS

7. RAG is flexible: Works with any document type, not just PDFs
8. Context matters: System can handle both document-specific and gen-
eral queries appropriately

23



CONCLUSION

Conclusion
RAG systems represent a paradigm shift in how AI applications access and uti-
lize information. By combining the retrieval capabilities of modern search with
the generation power of large language models, RAG enables:
• Accurate, sourced responses to complex queries
• Dynamic knowledge bases that can be updated without retraining
• Cost-effective scaling compared to fine-tuning models
• Transparent AI that shows its reasoning and sources

Whether applied to academic research, enterprise knowledge management,
or customer support, RAG systems provide a robust framework for intelligent
information retrieval and generation.
The key to successful RAG implementation lies in understanding and optimizing
each component - from chunk size and overlap to retrieval weights and gener-
ation parameters. With proper configuration, RAG systems can transform how
organizations leverage their information assets.

Thank you for your attention!

Questions?

24



I

Yerhabasorusunacontexdi.si

oldugu iain bu sekilde yonit

veriger

Rag modelinde

3 adet Pdf var

2 open code Reasoning
makale

2 Faith LM

3 Stop overthinking



I

Her iki degerde 40k yiksel

Verdisimiz

parametreye
gore desisiyer



IF

Fyn

sorn am deserter en disitte

rettisi metinler arasindaki Kalite

fork no blenz



5

yukaridekigle ayn ornel aym

Montik Sadece sore forklie

T

i



3

5

Repo nun tamama github adresinde

Meuent NUDIA ekron Kantlarinda daha

stabil actis acosin hater at mak isterim

M OWEN yizinder


