Retrieval-Augmented Generation (RAG)
Systems
Understanding Modern Information Retrieval and Generation

RAG Academic Assistant Team

Retrieval-Augmented Generation (RAG) Systems

Understanding Modern Information Retrieval and Genera-
tion

Table of Contents

What is RAG and Why Do We Need It?

Understanding Chunking: The Foundation of RAG

The Retrieval Process: From Query to Results

Vector Databases and ChromaDB

Hybrid Search: Combining Semantic and Keyword Search
Language Model Generation and Parameters

Real-World Applications and Examples

System Architecture Overview

Practical Implementation Considerations

Future of RAG Systems

SCL®~NaURAWNE

'_I

1. WHAT IS RAG AND WHY DO WE NEED IT?

1. What is RAG and Why Do We Need It?

Project Implementation

This presentation is based on our RAG Academic Assistant project, which
demonstrates these concepts in practice. You can explore the complete
implementation at:

GitHub Repository: github.com/naholav/rag-academic-assistant

The project includes: - Full RAG pipeline implementation with ChromaDB - Sup-
port for multiple PDF documents - Dual-mode chat interface (RAG and Direct) -
Turkish and English language support - Streamlit-based user interface

The Problem with Traditional Language Models

Large Language Models (LLMs) like GPT, Claude, and LIlama have revolutionized
natural language processing, but they face critical limitations:

Knowledge Limitations

» Static Knowledge: Models only know what they learned during training

* No Real-Time Updates: Cannot access information after their training
cutoff date

* Hallucination: May generate plausible-sounding but incorrect informa-
tion

* No Source Attribution: Cannot cite where information comes from

The Solution: RAG

Retrieval-Augmented Generation (RAG) combines the power of: 1. In-
formation Retrieval: Finding relevant information from a knowledge base 2.
Language Generation: Using LLMs to create natural, coherent responses

Think of RAG as giving an Al assistant access to a library. Instead of relying only
on memorized information, it can look up specific books and pages to answer
your questions accurately.

How RAG Transforms Al Applications
Without RAG (Traditional LLM)

User: "What's our company's vacation policy?"
LLM: "I don't have access to your company's specific policies."

https://github.com/naholav/rag-academic-assistant

How RAG Transforms Al Applicatiods WHAT IS RAG AND WHY DO WE NEED IT?

With RAG

User: "What's our company's vacation policy?"

RAG System: "According to the Employee Handbook (Page 23),
employees receive 15 vacation days in their first year,
increasing to 20 days after three years of service."

2. UNDERSTANDING CHUNKING - THE FOUNDATION OF RAG

2. Understanding Chunking - The Foundation of
RAG

What is a Chunk?

A chunk is a small, manageable piece of text extracted from a larger document.
Think of it like breaking a book into paragraphs or pages that can be individually
searched and retrieved.

Why Do We Need Chunking?

1. Context Window Limitations: LLMs can only process a limited amount
of text at once

2. Efficiency: Processing entire documents for every query would be slow
and expensive

3. Relevance: We only need the specific parts that answer the user’s ques-
tion

4. Cost: Processing less text means lower computational costs

Chunk Size: Finding the Sweet Spot
What is Chunk Size?

Chunk size is the number of tokens (words/subwords) in each text segment.
Common sizes range from 200 to 1500 tokens.

Optimal Chunk Sizes and Trade-offs

Table 1: Chunk Size Comparison

Chunk Tokens Use Case Advantages Disadvantages

Size

Small 200-400 | Precise facts, | High precision, | May lose context
definitions specific answers

Medium | 500-800 | General use, | Good context, | Balanced trade-
balanced manageable offs

Large 1000- Complex top-| Full context, com-| Less precise,

1500 ics plete ideas higher costs

Our Choice: 800 Tokens

We use 800 tokens because: - Complete Ildeas: Enough space for 2-3 full
paragraphs - Sufficient Context: Captures relationships between concepts -

Chunk Overlap: M2intAiIBB STAYNBXNG CHUNKING - THE FOUNDATION OF RAG

Efficient Processing: Reasonable computational load - Good Retrieval: Not
too broad to dilute relevance

Chunk Overlap: Maintaining Context
What is Chunk Overlap?

Chunk overlap is the number of tokens shared between consecutive chunks.
It ensures important information at chunk boundaries isn’t lost.

Visual Example of Overlapping

Document: "The sky was blue. Birds were singing. It was a perfect day.
Children played in the park. Their laughter filled the air."

Without Overlap:

Chunk 1: "The sky was blue. Birds were singing."

Chunk 2: "It was a perfect day. Children played in the park."
Problem: Lost connection between weather and children playing

With 150 Token Overlap:
Chunk 1: "The sky was blue. Birds were singing. It was a perfect day."

Chunk 2: "It was a perfect day. Children played in the park. Their laughter...

Benefit: Maintains context between chunks

Why 150 Token Overlap?

* Context Preservation: ~20% overlap maintains narrative flow

 Boundary Information: Captures complete sentences at edges

* Retrieval Improvement: Related information appears in multiple
chunks

» Storage Balance: Reasonable increase in storage (not doubling data)

3. THE RETRIEVAL PROCESS

3. The Retrieval Process

Candidates to Retrieve vs. Final Chunks Used
Stage 1: Candidates to Retrieve (Casting a Wide Net)

Candidates to retrieve refers to the initial number of potentially relevant
chunks the system fetches from the database.

* Typical Range: 10-100 chunks
* Our Setting: 20 candidates
* Purpose: Ensure we don’'t miss relevant information

Stage 2: Final Chunks Used (Precision Selection)

Final chunks used are the top-ranked chunks actually sent to the LLM for
answer generation.

* Typical Range: 3-10 chunks

e Our Setting: 5 chunks

* Purpose: Provide focused, relevant context without overwhelming the
model

The Filtering Process

User Query: "What are the performance metrics?"
i
Step 1: Retrieve 20 candidate chunks (broad search)
- Chunk A: Performance metrics... (Score: 0.95)
- Chunk B: Benchmark results... (Score: 0.92)
- Chunk C: System performance... (Score: 0.89)
(17 more chunks with lower scores)
i
Step 2: Rerank using cross-encoder
i
Step 3: Select top 5 chunks for generation
i
Final Context: Only the 5 most relevant chunks

Why This Two-Stage Approach?

1. Recall vs. Precision: First maximize recall (find everything), then maxi-
mize precision (keep only the best)

2. Computational Efficiency: Initial search is fast, detailed reranking only
on subset

Candidates to Retrieve vs. Final Chunks Used 3. THE RETRIEVAL PROCESS

3. Quality Assurance: Multiple evaluation stages reduce chance of missing
information
4. Context Optimization: LLM receives focused, high-quality information

4. VECTOR DATABASES AND CHROMADB

4. Vector Databases and ChromaDB

What is a Vector Database?

A vector database is a specialized database designed to store and search
numerical representations (embeddings) of text, images, or other data.

Traditional Database vs. Vector Database

Table 2: Database Comparison

Traditional Database Vector Database

Stores exact data (text, num-| Stores numerical vectors

bers) (embeddings)

Searches by exact match or | Searches by semantic simi-

keywords larity

"Find documents with ‘car’” | "Find documents similar in
meaning to '"automobile’”

Returns exact matches only | Returns conceptually related
results

ChromaDB: Our Vector Storage Solution

ChromaDB is an open-source vector database optimized for Al applications.

Key Features of ChromaDB

Persistent Storage: Data survives system restarts

Metadata Support: Store additional information with vectors
Efficient Indexing: Fast similarity search using HNSW algorithm
Local or Cloud: Can run on your machine or in the cloud
Simple API: Easy integration with Python applications

mhwhE

How ChromaDB Works in RAG

1. Document Processing:
Text: "Machine learning revolutionizes data analysis”
i
2. Create Embedding:
Vector: [0.23, -0.45, 0.67, 0.12, ...] (768 dimensions)
i
3. Store in ChromaDB:
ID: chunk 001
Vector: [0.23, -0.45, 0.67, ...]

ChromaDB: Our Vector Storage SolutiénVECTOR DATABASES AND CHROMADB

Metadata: {page: 5, source: "AI Guide.pdf"}
i

. Query Time:

User: "How does AI analyze data?"
Query Vector: [0.21, -0.43, 0.65, ...]
i

. Similarity Search:

ChromaDB finds vectors closest to query vector
Returns: chunk 001 (similarity: 0.92)

Why Vector Databases Matter

Semantic Understanding: Find information by meaning, not just key-
words

Multilingual: Works across languages (similar concepts have similar vec-
tors)

Scalability: Efficiently search millions of documents

Flexibility: Works with any type of content that can be embedded

5. HYBRID SEARCH - THE BEST OF BOTH WORLDS

5. Hybrid Search - The Best of Both Worlds

Semantic Search Weight (70%)

Semantic search uses embeddings to find content based on meaning and
context.

How Semantic Search Works

Query: "vehicle performance"

Semantic Search Finds:

- "car speed and efficiency" (different words, same meaning)
- "automobile capabilities" (synonyms understood)

- "transportation metrics" (related concepts)

Why 70% Weight?

Conceptual Understanding: Captures the intent behind queries
Synonym Recognition: Finds related terms automatically
Context Awareness: Understands relationships between concepts
Language Flexibility: Works across different phrasings

BM25 Keyword Weight (30%)

BM25 (Best Matching 25) is a probabilistic ranking function for keyword-
based search.

How BM25 Works

Query: "GPT-4 temperature parameter"

BM25 Finds:

- Documents with exact term "GPT-4"

- Documents with exact phrase "temperature parameter"
- Weights by term frequency and document length

Why 30% Weight?

* Precision for Technical Terms: Exact matches for acronyms, model
names

» Specific Terminology: Medical terms, legal phrases, product names

« Complementary Coverage: Catches what semantic search might miss

* Proven Reliability: Decades of information retrieval research

10

The Power of Combination 5. HYBRID SEARCH - THE BEST OF BOTH WORLDS

The Power of Combination
Example: Hybrid Search in Action

Query: "OCR-Qwen-32B performance benchmarks"

Semantic Search (70%) finds:
"model evaluation results"
"accuracy measurements”
"testing outcomes"

BM25 (30%) finds:

- Exact matches for "OCR-Qwen-32B"
- Exact matches for "benchmarks"

Combined Result: Documents that contain the specific model name
AND discuss performance conceptually

11

6. LANGUAGE MODEL GENERATION AND PARAMETERS

6. Language Model Generation and Parameters

Understanding LLM Parameters
Temperature (0.3)

Temperature controls the randomness/creativity of the model’s output.

Temperature Scale:

0.0 I 1.0
Deterministic 0.3 Creative
(Factual) (Our Setting) (Imaginative)

Why 0.3 for RAG?

 Factual Accuracy: Low temperature ensures consistent, reliable
answers

* Reduced Hallucination: Less likely to generate creative but incorrect
information

* Reproducibility: Similar queries produce similar answers

* Professional Tone: Maintains formal, informative style

Examples at Different Temperatures

Query: "What is machine learning?"

Temperature 0.1 (Very Factual):
"Machine learning is a subset of artificial intelligence that enables
systems to learn from data without explicit programming."

Temperature 0.3 (Balanced):

"Machine learning is a branch of AI where computers learn patterns
from data to make decisions without being explicitly programmed
for each specific task."

Temperature 0.8 (Creative):

"Machine learning is like teaching a computer to think by showing
it examples, similar to how children learn by observing patterns
in the world around them."

Top-p (0.95)

Top-p (nucleus sampling) limits the model to considering only the most prob-
able tokens that sum to probability p.

12

Understanding LLM Pard&métst&UAGE MODEL GENERATION AND PARAMETERS

Top-p Visualization:

All possible next words sorted by probability:

[the: 0.3] [a: 0.25] [an: 0.2] [this: 0.15] [that: 0.05]
T T 1 1
Cumulative: 0.95 (stop here)
Only consider these words

Why 0.95?

Quality Control: Excludes very unlikely (potentially wrong) options
Diversity: Still allows variety in word choice

Natural Language: Produces fluent, human-like text

Safety: Reduces chance of generating inappropriate content

Max Tokens (2048)

Max tokens sets the maximum length of the generated response.

Token Examples:

"Hello" = 1 token

"Machine learning" = 2 tokens
“The quick brown fox" = 4 tokens
Average: ~1.3 tokens per word

Why 2048 Tokens?

« Comprehensive Answers: ~1500 words, enough for detailed explana-
tions

* Context Preservation: Sufficient space for multi-part answers

* User Experience: Not overwhelming, readable in one sitting

» Cost Efficiency: Balances completeness with computational resources

13

7. REAL-WORLD APPLICATIONS AND EXAMPLES

7. Real-World Applications and Examples

Example 1: Document-Based Question Answering
Soru: “OpenCodeReasoning’de en iyi model hangisi?”

RAG System Process:

1. Query Embedding: Convert Turkish query to vector

2. Retrieval: Find chunks about model performance

3. Context Assembly: Gather information about OCR-Qwen-32B
4. Generation: Produce answer with citations

Cevap: “OPENCODEREASONING’'de en iyi model, OCR-Qwen-32B-Instruct
olarak belirlenmistir. Bu model, LiveCodeBench’'te pass@l orani 61.7'dir
(ortalama @64), bu deger DeepSeek-R1’'in 65.9'una cok yakin olup, diger acik
kaynak modellerden dstundur. (Kaynak: Sayfa 2, 7)”

Example 2: Out-of-Context Query Handling
Soru: “Selam”

When queries are unrelated to the document content, RAG systems have two
options:

Option 1: Fallback to General LLM
No relevant chunks found - Use LLM's general knowledge

Cevap: “Merhaba! Size nasil yardimci olabilirim? Eger belge icerigi hakkinda
sorulariniz varsa, detayli bilgi verebilirim.”

Option 2: Context-Aware Response
System recognizes greeting - Appropriate response without retrieval

This demonstrates RAG’s flexibility in handling both document-specific and gen-
eral queries.

Interactive Parameter Exploration with GitHub Implemen-
tation

To see these concepts in action and experiment with RAG parameters, explore
our implementation:

GitHub Repository: github.com/naholav/rag-academic-assistant

The implementation provides an interactive interface where users can adjust
parameters in real-time to understand how each affects the system:

14

https://github.com/naholav/rag-academic-assistant

Interactive Parameter ExplorationReah-G@IORLUDI ARPEBARTONGNAND EXAMPLES

Retrieval Parameters

 Candidates to Retrieve (10-100): Start with more candidates for com-
prehensive coverage
- Set to 10: Fast but might miss relevant info
- Set to 50: Balanced coverage
- Set to 100: Maximum recall, slower processing
* Final Chunks Used (1-20): How many chunks actually go to the LLM
- Set to 1: Very focused, risk of incomplete context
- Set to 5: Our default - balanced context
- Set to 20: Maximum context, but may include noise

Hybrid Retrieval Weights Users can adjust the balance between search
methods: - Semantic Search Weight (0.0-1.0): Understanding meaning
and concepts - 0.0: No semantic search - 0.7: Our default - prioritizes meaning
- 1.0: Only semantic, might miss exact terms

* BM25 Keyword Weight (0.0-1.0): Exact term matching
- 0.0: No keyword search
- 0.3: Our default - catches specific terms
- 1.0: Only keywords, misses synonyms

Generation Settings Fine-tune how the LLM generates responses: - Tem-
perature (0.10-1.00): Controls randomness/creativity - 0.10: Very determin-
istic, same answer every time - 0.30: Our default - factual but natural - 1.00:

Creative, varied responses

* Max Response Tokens (256-4096): Response length limit
- 256: Short, concise answers
- 2048: Our default - comprehensive responses
- 4096: Maximum detail possible
* Top P (0.10-1.00): Nucleus sampling for quality control
- 0.10: Only highest probability tokens
- 0.95: Our default - natural variation
- 1.00: All possibilities considered

Learning by Experimentation

By adjusting these parameters, users can observe: - How semantic vs keyword
weights affect retrieval quality - The impact of temperature on response con-
sistency - Trade-offs between speed and comprehensiveness - How different
settings work better for different query types

This hands-on approach helps users internalize RAG concepts through direct
experimentation rather than theoretical understanding alone.

15

When to Use RAG vs. Pure LLM 7. REAL-WORLD APPLICATIONS AND EXAMPLES

When to Use RAG vs. Pure LLM

Table 3: RAG vs Pure LLM Use Cases

Use RAG When: Use Pure LLM When:
Need specific, factual infor-| General conversation
mation

Require source citations Creative writing

Working with proprietary | Common knowledge ques-
data tions

Information changes fre-| Philosophical discussions
quently

Accuracy is critical Brainstorming ideas

16

8. SYSTEM ARCHITECTURE OVERVIEW

8. System Architecture Overview

Complete RAG Pipeline
Input Processing Layer

RAG systems can handle various input formats, not just PDFs:

Documents: PDF, Word, PowerPoint, Excel

Web Content: HTML pages, blog posts, wikis

Databases: SQL databases, APIs, knowledge graphs

Multimedia: Transcribed audio, video captions, image descriptions

17

The Universal RAG Workflow

8. SYSTEM ARCHITECTURE OVERVIEW

The Universal RAG Workflow

1. Data Ingestion (Any Source)

PDF documents
Web scraping
Database exports
API responses

i
Preprocessing
— Text extraction
— Cleaning & formatting
— Language detection
— Metadata extraction
i

. Chunking Strategy

— Size: 800 tokens (optimal for most use cases)

— Overlap: 150 tokens (maintains context)

— Boundary detection (sentence/paragraph aware)
{

Embedding Generation

— Model: all-mpnet-base-v2 (768 dimensions)

— Batch processing for efficiency

— Cache embeddings for reuse
i

. Vector Storage (ChromaDB)

— Persistent storage

— Metadata indexing

— HNSW index for fast search
i

. Query Processing

User query - embedding
Hybrid search (70% semantic + 30% BM25)
Retrieve 20 candidates
Rerank to top 5
i

. Generation (Qwen3-4B)

Temperature: 0.3 (factual)

Top-p: 0.95 (quality control)

Max tokens: 2048 (comprehensive)

Streaming for real-time feedback
i

. Response Delivery

— Answer with citations
—— Source attribution
— Confidence scoring

18

Performance Metrics and Expectations 8. SYSTEM ARCHITECTURE OVERVIEW

Performance Metrics and Expectations

System Performance Benchmarks

Table 4: Performance Metrics

Metric Value Explanation

Initial Setup 30-60 One-time processing of docu-
sec ments

Query Response | 1-3 sec From question to answer

Accuracy 85-95% Depends on document quality

Chunk Retrieval | <100ms | Vector similarity search

Generation Time | 1-2 sec LLM response generation

Quality Indicators

1. Retrieval Quality: Measured by relevance of retrieved chunks
2. Answer Accuracy: Factual correctness compared to source

3. Citation Precision: Correct attribution to source documents
4. Response Coherence: Natural, well-structured answers

19

9. PRACTICAL IMPLEMENTATION CONSIDERATIONS

9. Practical Implementation Considerations

Choosing the Right Parameters

Document Type Considerations

Table 5: Parameter Selection by Document Type

Document Chunk Overlap | Retrieval
Type Size Count
Technical Man-| 1000-1200 | 200 15-20
uals

Research Pa-| 800-1000 150 10-15
pers

Legal Docu-| 600-800 150 20-25
ments

General Con-| 500-800 100 10-15
tent

Language Model Selection

Table 6: Model Size Comparison

Model Size Use Case Advantages Trade-offs
4B Parame-| General use Speed, effi- | Less nuanced
ters ciency

7B Parame- | Balanced Good quality Moderate re-
ters sources

13B+ Parame-| Complex Highest quality | Slower, ex-
ters pensive

Common Challenges and Solutions
Challenge 1: Information Not in Documents

Scenario: User asks about something not in the knowledge base

Solution: Implement fallback mechanisms: - Clearly state when information
isn’t available - Offer to search related topics - Provide general knowledge if
appropriate

Challenge 2: Conflicting Information

Scenario: Different documents contain contradictory information

20

Common Challenges and SAURRACTICAL IMPLEMENTATION CONSIDERATIONS

Solution: - Show both perspectives with sources - Highlight the discrepancy -
Let user evaluate based on source credibility

Challenge 3: Language Mixing

Scenario: Documents in English, queries in Turkish

Solution: - Use multilingual embeddings - Implement translation layer - Main-
tain language consistency in responses

21

10. FUTURE OF RAG SYSTEMS

10. Future of RAG Systems

Emerging Trends
1. Multimodal RAG

 Combining text, images, tables, and graphs
* Understanding relationships across media types
* Generating rich, multimedia responses

2. Adaptive Chunking

* Dynamic chunk sizes based on content type
* Intelligent boundary detection
* Context-aware segmentation

3. Personalized Retrieval

* Learning user preferences over time
* Adjusting weights based on query patterns
* Custom ranking algorithms

4. Real-Time Knowledge Updates

* Continuous document ingestion
* Incremental index updates
» Version control for information

Key Takeaways

1. RAG bridges the gap between static LLM knowledge and dynamic infor-
mation needs

2. Chunking is crucial: 800 tokens with 150 overlap provides optimal bal-
ance

3. Hybrid search (70% semantic + 30% keyword) outperforms single ap-
proaches

4. ChromaDB enables efficient vector storage and retrieval

5. Parameter tuning (temperature=0.3, top-p=0.95, max_tokens=2048)
ensures quality outputs

6. Two-stage retrieval (20 candidates — 5 final) balances comprehensive-
ness and precision

22

Key Takeaways 10. FUTURE OF RAG SYSTEMS

7. RAG is flexible: Works with any document type, not just PDFs

8. Context matters: System can handle both document-specific and gen-
eral queries appropriately

23

CONCLUSION

Conclusion

RAG systems represent a paradigm shift in how Al applications access and uti-
lize information. By combining the retrieval capabilities of modern search with
the generation power of large language models, RAG enables:

* Accurate, sourced responses to complex queries

* Dynamic knowledge bases that can be updated without retraining
* Cost-effective scaling compared to fine-tuning models

* Transparent Al that shows its reasoning and sources

Whether applied to academic research, enterprise knowledge management,
or customer support, RAG systems provide a robust framework for intelligent
information retrieval and generation.

The key to successful RAG implementation lies in understanding and optimizing
each component - from chunk size and overlap to retrieval weights and gener-
ation parameters. With proper configuration, RAG systems can transform how
organizations leverage their information assets.

Thank you for your attention!

Questions?

24

Qwen3-4B-l... ey

Device

GPU (CUDA) & RAG Academic Assistant

® Chat MR Retrieved Sources

B documents

FaithLM - Page 10
merhaba R B

B StopOverthinking - Page 19

t=) Merhaba, sorunuza cevap veremedim ciinkii sormus oldugunuz "merhaba” fadesi bir soru ya da istek olarak yorumlanamaz. Liitfen daha net
ve bilgi igeren bir soru soralim. Ornegin, "Efficient reasoning in LLMs nasil calisir?" veya "Large language models'in kendi agiklamalarini I StopOverthinking - Page 20
yapma yetenegi nedir?" gibi bir soru ile ilgili detayli bilgi sunabilirim

B FaithLM - Page 9
B StopOverthinking - Page 30

. StopOverthinking - Page 28

Chat Mode
® B StopOverthinking - Page 8

@ Enable RAG .
(Document Search) B FaithLM - Page 10

@ RAG Mode: Searching B FaithLM - Page 9

documents

B FaithLM - Page 15

2, Settings

Retrieval

\"4
Mtc habs Joruseng Con Fe€x dig,

o}?dng (cin by FZZUZ ymlﬂ‘

'\/lr}@or\

G9 MO()Q/I'I\Q)G '
L adet fof v

l— @Pén Code Kfcyof)/./\j

MQ'(G[@

3) S+op DOver thinkiag

® Chat Mode

Enable RAG
(Document Search)

G Mode: Searching

uments

Retrieval

Candidates to Retrieve

Final Chunks Used

> B8 Advanced Settings

Clear Chat History

D

Deploy

RAG Academic Assistant

® Chat A Retrieved Sources

A er

R OpenCodeReasoning - Page 2
merhaba

B OpenCodeReasoning - Page 3
Merhaba, sorunuza cevap veremedim ¢iinkii sormus oldugunuz "merhaba" ifadesi bir soru ya da istek olarak yorumlanamaz. Liitfen daha net
ve bilgi igeren bir soru soralim. Ornegin, "Efficient reasoning in LLMs nasil calisir?" veya "Large language models'in kendi agiklamalarini M OpenCodeReasoning - Page 7
yapma yetenegi nedir?" gibi bir soru ile ilgili detayli bilgi sunabilirim

. OpenCodeReasoning - Page 5

OpenCodeReasoning makalesindeki en iyi model hangisydi ? B OpenCodeReasoning - Page 6

R OpenCodeReasoning - Page 2
OpenCodeReasoning makalesinde en iyi model, OCR-Qwen-32B-Instruct olarak belirtilmistir. Bu model, LiveCodeBench ve CodeContests

basliklannda diger modellere kiyasla iistiinlik géstermektedir. Ozellikle LiveCodeBench'de pass@1 orani 61.8 (average@64) olup, DeepSeek:

R1'in 65.9 pass@1'ine yakin bir sonug vermektedir. Bu performans, ayni boyutlarda olan diger acik kaynak SFT-only modellerden (6rnegin R1- B OpenCodeReasoning - Page 6

Distill-Qwen-32B) daha yiiksek olup, 6zellikle 32B 6lgekte giiclii bir sekilde performans sergiliyor. Bu bilgi, [Kaynak 1), [Kaynak 4] ve [Kaynak
7] sayfalaninda yer almaktadir. B OpenCodeReasoning - Page 3

B FaithLM - Page 20

B FaithLM - Page 19

| b &zjm)@ Gol yobsele

VVerdisimiz
Po/‘a!‘*f’ffft] e
ASlMe¢ desiS/yor

Deploy }

woLliau M NTLUITVEU oUUILED

> B OpenCodeReasoning - Page 3

—rN————

merhaba

o hat Mode Merhaba, sorunuza cevap veremedim ciinkii sormus oldugunuz "merhaba" ifadesi bir soru ya da istek olarak yorumlanamaz. Litfen daha
net ve bilgi iceren bir soru soralim. Ornegin, "Efficient reasoning in LLMs nasil calisir?" veya "Large language models'in kendi aciklamalarini
Enable RAG yapma yetenegi nedir?" gibi bir soru ile ilgili detayl bilgi sunabilirim.
(Document Search)

®_ RAG Mode: Searching OpenCodeReasoning makalesindeki en iyi model hangisydi ?
documents ——————

OpenCodeReasoning makalesinde en iyi model, OCR-Qwen-32B-Instruct olarak belirtilmigtir. Bu model, LiveCodeBench ve CodeContests
basliklaninda diger modellere kiyasla tistiinliik gostermektedir. Ozellikle LiveCodeBench'de pass@1 orani 61.8 (average@64) olup,
DeepSeek-R1'in 65.9 pass@1'ine yakin bir sonug vermektedir. Bu performans, ayni boyutlarda olan diger acik kaynak SFT-only modellerden
(6rnegin R1-Distill-Qwen-328B) daha yiiksek olup, 6zellikle 32B dl¢ekte glicli bir sekilde performans sergiliyor. Bu bilgi, [Kaynak 1], [Kaynak 4]

2\, Settings

ve [Kaynak 7) sayfalarinda yer almaktadir.

Retrieval

Candidates to Retrieve OpenCodeReasoning makalesindeki en iyi model hangisydi ?

Final Chunks Used) Verilen baglamda, OpenCodeReasoning makalesinde ¢oziim kodu tiretimi adimi igin kullanilan en iyi veya ana model, DeepSeek-R1 olarak
belirtilmistir. Bu bilgi, metnin "2.2 Solution Code Generation" béliimiine gore verilmistir. Burada, DeepSeek-R1'in Python ve C++ dillerinde
goziimler tretmesi, 6zellikle daha zor olan 101 benchmark'i test etmek amaciyla C++ kullanilarak yapilan deneylerde de vurgulanmigtir,
Ayrica, ¢oziim Uretimi sirasinda Nucleus Sampling ile sicaklik (temperature) 0.6, top-p 0.95 degerleri ve "6rnek” etiketi ("injecting 'thinking'

> B Advanced Sl tag") kullanildig: da belirtilmektedir.

Modelin secildigi nedeniyle, bu modelin 6zellikle akil ylirlitme izleri olusturmasi (reasoning traces) gerektiren gorevlere uygun oldugu ifade

edilmektedir. Ancak, bu sliregte ¢oziim tretimi igin kullanilan modelin "en iyi" olup olmadigina dair dogrudan bir degerlendirme

yapilmamistir. Yani, diger modellerle karsilastinldiginda "en iyi* olma durumu dogrudan belirtilememektedir
% Clear Chat History
Sonug olarak, OpenCodeReasoning ¢alismasinda ¢oziim tiretimi igin kullamlan ana model DeepSeek-R1dir. Bu bilgi, kaynakta yer alan 2.2

bélimiinde (sayfa 3) yer almaktadir.

Cevap: DeepSeek-R1 modeli. (Kaynak: Sayfa 3)

Al Soru Gma degerler e)CW“’?'

Qré++f§{ metinler areyingde i ZGJ/'YL(

LC/‘E‘AO’](/I?—'

@® Chat Mode

Enable RAG

(Document Search)

& RAG Mode: Searching

documents

2\, Settings
Retrieval

Candidates to Retrieve

Final Chunks Used

> B8 Advanced Settings

% Clear Chat History

@ Chat M Retrieved Sources

StopOverthinking - Page 1
stop overthinking makalesi ne anlatiyor, 8zetler misin? B B € &

B StopOverthinking - Page 23
top Overthinking" makalesi, Biyiik Dilsel Modellerinde (LLM'lerde) verimli diigiinme (nt reasoning) konusunu sister
arastiran ilk yapilandiniimig bir 6zge¢misi sunar. Bu ¢alisma, uzun ve gereksiz olan "diisiinme asirlig1” {overthinking) fenomeninin, 6zellikle I StopOverthinking - Page 28
Chain-of-Thought (CoT) diisiinme siirecinde, gereksiz ve tekrar eden giktilar iretmesi nedeniyle maliyet artisi ve yavas yanit siireleri ile
sonuclandigini belirtir. R StopOverthinking - Page 18
Makale, verimli diisinmeyi {i¢ ana yénde siniflandirir:
B stopOverthinking - Page 19
Model temelli verimli diigiinme: Tam uzunlukta diigiinme modellerinin daha kisa ve sade hale getirilmesi veya dogrudan verimli
dusunme modellerinin egitilmesi. . FaithLM - Page 21
Diigiinme giktisi temelli verimli diisiinme: Caligma sirasinda diisiincelerin adim sayisinin ve uzunlugunun dinamik olarak azaltiimas:
Girdi uyarilan temelli verimli diigiinme: Diigiinme verimliliginin, girig uyanisinin zorlugu ya da uzunlugu gibi ozelliklerine gore R FaithLM - Page 8

artinlmas

Makale ayrica verimli verilerin kullanimina, kiigiik dilsel modellerin diisiinebilirlik kapasitesine, degerlendirme yontemlerine ve standartlara R FaithLM - Page 23

dair tartismalar igerir. Ornegin, [4] sayfasinda "overthinking” fenomeni, analiz paralizi, kita davranislar ve erken g5zmeye gecis gibi
desenlerle incelenmis ve bu durumlarin model basarimini diistirdugi gosterilmistir. Ayrica, [143] ve [145] kaynaklarinda, diisiince zinciri I stopOverthinking - Page 26
uzunlugu ile model ciktisinin etkinligi arasinda glicli iliski oldugu ve giivenilirlik ile ilgili kritik noktalarin tespit edildigi belirtilmektedir.

B stopOverthinking - Page 29
Bu calismanin 6nemli bir bolimi, verimli diisinmenin uygulama alanlarina katkilarini aciklar: otomatik siiriis sistemlerinde karar alma

stireglerinin iyilestirilmesi ([4]), saghik alaninda doktorlar i¢in hastane kayitlarinin hizli analiz edilmesi ([5]), ve dnerme sistemlerinde kullanici

tercihlerine gore daha kisisellestirilmis onerilerin olusturulmasi ([5]).

Sonug olarak, verimli dugiinme, yalnizca islem maliyetini azaltmakla kalmaz; ayni zamanda guvenlik ve verimlilik arasindaki gerilimi de ele
alir. Ornegin, giivenlik onlemleri uzun diisiinceler gerektirirken, verimlilik odakli yaklagim, modelin kendi cevabini kontrol etme veya karsi

saldinya direng kazanma yetenegini azaltabilir ([5]). Bu nedenle, giivenligin verimlilikten aynistirilmasinin olast oldugunu vurgular
Bu makale, verimli diisiinme iizerine yapilan ¢alismalarin gelisimini takip etmek amaciyla agik kaynakli bir deposu da sunar ([1])

Ozet: Makale, biiyiik dil modellerinde verimli diisinmenin 6nemini vurgular, bunu iig ana kategoriye ayirarak inceleyerek, uzun diisiince

zincirinin maliyeti ve basarimi tizerindeki etkisini, uygulama alanlanni ve giivenlik-verimlilik dengesini analiz eder.

Deploy

3u%cr|c>c[«fjl€ aynl Srnel, agm

(Vlcn'l'(kl So&(c\? SOoru Ecrlly,

Deploy

& RAG Academic Assistant

at Mode
Enable RAG) ® Chat MR Retrieved Sources
(Document Search)

. < - > B StopOverthinking - Page 23
_ stop overthinking makalesi ne anlatiyor, 6zetler mi
& RAG Mode: Searchi

documents

Verilen igerik, "Stop Overthinking" adli makalenin detaylarini sunmuyor ve bu makaleyle ilgili yeterli bilgi icermez. Makale, "Reconsidering

overthinking: Penalizing internal and external redundancy in cot reasoning" baslig altinda yer alir ve 2025 yilinda yayinlanmistir. Ancak, bu

kaynaktaki bilgiler, makalenin ana fikirlerini, ydntemlerini veya sonuglanini agik¢a agiklamaz. Sadece yazarlarin isimleri ve sayfa numaras

(sayfa 23) verilmistir. Bu nedenle, makalenin icerigini 6zeti olarak ifade etmek mimkiin degildir. Bu sinirlama nedeniyle, soruya dogrudan bir
N Settings cevap verilememektedir.

Retrieval

Candidates to Retrieve

Final Chunks Used

> B8 Advanced Settings

% Clear Chat History

«Zfo’m,n 4 6 pemi 1hheb adresiade

MZUCL/l NVO]'H Z,(fCA LCC_/\‘I'lCI‘(/\dQ, aahq

5+4L1') C;CI\$GCG’§M| l’)c+{/’o+ Mook lS*(ﬁ'M,

L[/[,/V) - QwWEWN 362&\&@(\)

